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The mirror effect - a phenomenon whereby a manipulation produces opposite effects on
hit and false alarm rates - is benchmark regularity of recognition memory. A likelihood
ratio decision process, basing recognition on the relative likelihood that a stimulus is a tar-
get or a lure, naturally predicts the mirror effect, and so has been widely adopted in quan-
titative models of recognition memory. Glanzer, Hilford, and Maloney (2009)
demonstrated that likelihood ratio models, assuming Gaussian memory strength, are also
capable of explaining regularities observed in receiver-operating characteristics (ROCs),
such as greater target than lure variance. Despite its central place in theorising about
recognition memory, however, this class of models has not been tested using response time
(RT) distributions. In this article, we develop a linear approximation to the likelihood ratio
transformation, which we show predicts the same regularities as the exact transformation.
This development enabled us to develop a tractable model of recognition-memory RT
based on the diffusion decision model (DDM), with inputs (drift rates) provided by an
approximate likelihood ratio transformation. We compared this “LR-DDM"” to a standard
DDM where all targets and lures receive their own drift rate parameters. Both were imple-
mented as hierarchical Bayesian models and applied to four datasets. Model selection tak-
ing into account parsimony favored the LR-DDM, which requires fewer parameters than
the standard DDM but still fits the data well. These results support log-likelihood based
models as providing an elegant explanation of the regularities of recognition memory,
not only in terms of choices made but also in terms of the times it takes to make them.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In recognition memory, participants study a list of items and during a test phase and are asked to discriminate between
studied items (targets) and unstudied items (lures). Two of the most successful modeling frameworks for decision making in
recognition memory are signal detection theory (SDT) and sequential sampling. In signal detection theory, different stimulus
conditions are represented as continuous evidence distributions (usually Gaussian in shape), with the observer placing a cri-
terion on the evidence axis. Models in the SDT framework are successful for accounting for the shape of the receiver oper-
ating characteristic (ROC). To construct an ROC, participants undergo recognition memory testing across a range of different
bias conditions; hit rates (HR) are plotted against false alarm rates (FAR) for each bias condition. SDT models were successful
in predicting the curvilinear shape of the ROC, a nearly universal finding in recognition memory (Egan, 1958; Wixted, 2007).
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Nonetheless, a major weakness of SDT models is their inability to predict the shape of response time (RT) distributions: if RT
is determined by the distance from the response criterion, SDT models are not able to correctly predict right skewed RT dis-
tributions for both correct and error responses (Ratcliff & McKoon, 2008).

Sequential sampling models are the most successful framework for predicting the shapes of choice RT distributions. In
sequential sampling models, evidence is sampled from a stimulus until it reaches one of two response boundaries corre-
sponding to the decision alternatives; the response boundary is the choice and the time taken to reach the boundary is
the RT. We focus on the diffusion model, in which evidence begins to accumulate at the starting point z that is placed between
two response boundaries, the upper boundary a, and the lower boundary at 0. The rate of evidence accumulation is called the
drift rate (denoted by v): positive drift rates tend toward the upper boundary and negative drift rates tend toward the lower
boundary. As the absolute value of the drift rate increases, the rate of correct responses increases and RT decreases. Errors are
made because evidence accumulation is noisy; on each timestep Gaussian noise is added to the accrued evidence. To account
for perceptual encoding and response output processes that are outside of the scope of evidence accumulation, a fixed con-
stant t., is added to the RT distribution to reflect nondecision time.

There were two major successes of classical diffusion models. First, in contrast to distance-from-criterion SDT models,
they naturally predicted right skewed RT distributions for both correct and error responses. Second, they are able to account
for the speed-accuracy tradeoff through changes in the response boundary. A decreased boundary produce faster RTs as the
diffusion process has less distance to travel, but more errors result because closer response boundaries make it more likely
that the diffusion process will reach the incorrect boundary by accident. Nonetheless, the classical diffusion model also has a
number of weaknesses. As response boundaries increase errors disappear entirely, whereas experiments examining speed-
accuracy tradeoffs find that asymptotic accuracy is usually far from perfect, especially in recognition memory (e.g., Reed,
1976). Additionally, classical diffusion models have difficulty with the relative speeds of correct and error responses. Under
speeded conditions, errors are often faster than correct responses, whereas with more cautious responding errors are often
slower than correct responses. Classical diffusion models, in contrast, predict equivalent RT distributions for correct and
error responses under unbiased responding (Laming, 1968).

The problems with both of these modeling frameworks were solved by marrying them into a single framework, originally
by Laming (1968) in discrete time, and later in continuous time in Ratcliff’s diffusion decision model (DDM: Ratcliff, 1978;
Ratcliff & McKoon, 2008). The DDM uses an SDT front-end for a diffusion process: drift rates for each trial are sampled rel-
ative to a drift criterion d. from Gaussian evidence distributions with standard deviation #. Trial-to-trial variability in the
drift rate ensures that there is an asymptotic d’; as response boundaries are increased, performance can never exceed the
limit imposed by the overlap of target and lure drift rate distributions. Additionally, drift rate variability allows the model
to predict error responses that are slower than correct responses (Ratcliff, 1978; Ratcliff & McKoon, 2008). A diagram of the
DDM can be seen in Fig. 1.

Ironically, in the years that followed the publication of the seminal Ratcliff (1978) article, both SDT models and sequential
sampling models developed largely independently of each other. A major development in SDT models of recognition mem-
ory was the rejection of the equal variance signal detection model based on investigations of the z-transformed ROC (zROC).
Equal variance signal detection models predict linear zZROCs with a slope of 1. However, many investigations have revealed
zROC slopes of around 0.8 (Egan, 1958; Glanzer & Adams, 1990; Heathcote, 2003; Ratcliff, McKoon, & Tindall, 1994; Ratcliff,
Sheu, & Gronlund, 1992), or even less when random item variability is taken into account (Averell, Prince, & Heathcote, 2016;
Pratte & Rouder, 2012; Pratte, Rouder, & Morey, 2010). As a consequence, theorists have adopted the unequal variance signal
detection (UVSD) model, which allows greater variability for targets than for lures, potentially due to the contribution of
encoding variability (Wixted, 2007). Another development in SDT models, which will be described in more detail below,
is the usage of log-likelihood ratio signal detection theory models to capture the mirror effect (Glanzer & Adams, 1985;
Glanzer, Hilford, & Maloney, 2009).

The DDM was also updated with the adoption from Laming (1968) of cross-trial variability in the starting point of evi-
dence accumulation (Ratcliff & Rouder, 1998; Ratcliff, Van Zandt, & McKoon, 1999). Rather than have the starting point fixed
across trials, the starting point was sampled from a uniform distribution with range s,. The inclusion of this variability
parameter allowed for a complete account of the speed-accuracy tradeoff: the DDM with cross-trial variability in both start-
ing point and drift rates can predict faster errors than correct responses in speeded conditions while predicting slower cor-
rect than error responses in conditions that emphasise accuracy (Ratcliff & Smith, 2004). The model was further updated
with the inclusion of cross-trial variability in nondecision time (t.,), where nondecision time is sampled from a uniform dis-
tribution with range s;, to allow for better predictions of the leading edge of the RT distributions across different levels of
performance (Ratcliff, Gomez, & McKoon, 2004). However, the majority of DDM applications to recognition memory contin-
ued to use equal variance for targets and lures (Arnold, Broder, & Bayen, 2015; Bowen, Spaniol, Patel, & Voss, 2016; Criss,
2010; Ratcliff & Smith, 2004; Ratcliff, Thapar, & McKoon, 2004; Ratcliff, Thapar, & McKoon, 2010; Ratcliff, Thapar, &
McKoon, 2011; White & Poldrack, 2014).

A re-introduction of contemporary SDT influences to the DDM came from Starns, Ratcliff, and McKoon (2012), who tested
whether or estimates from the DDM were consistent with unequal variance signal detection models. They applied the DDM
to binary ROC data, where an ROC was created by giving participants yes/no decisions with bias manipulated via changes in
response proportions. This procedure allows for application of the DDM by manipulating the starting point along with the
drift criterion across the bias conditions. Starns et al. manipulated bias using five different levels of target proportions, yield-
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