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1. Introduction

Understanding how numerical symbols and their associated quantities are represented and used is a primary aspiration
of those working in numerical cognition. Once we understand how symbols are represented and assigned meaning, we will
understand how best to frame questions about how organisms become numerate (Cantlon, Platt, & Brannon, 2008;
Feigenson, Dehaene, & Spelke, 2004), how numeracy changes over time (Geary, 1994), how and why numerical errors arise
(Macaruso, McCloskey, & Aliminosa, 1993), how language and numeracy are related (Hauser, Chomsky, & Fitch, 2002),
whether or not numeracy is a cultural universal (Dehaene, Isard, Spelke, & Pica, 2008), and, so on. Despite almost half a cen-
tury of experimental study, the underlying representation of numerical symbols remains hotly debated.

Here, we present a model of number symbol encoding, representation, and retrieval. We instantiate this model in a ran-
dom walk simulation and predict performance in the core paradigm in the field of experimental numerical cognition: the
relative quantity task. Although we specifically simulate performance in the relative quantity task, the actual model informs
more generally about how a number conveys the quantity it denotes. Indeed, the processes that we use to simulate perfor-
mance in the task may reflect on more fundamental properties of the human perceptual system. Such general implications of
the work are examined in detail later.

* Corresponding author at: Department of Psychology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403-5612,
United States.
E-mail address: cohend@uncw.edu (D.J. Cohen).

http://dx.doi.org/10.1016/j.cogpsych.2016.10.002
0010-0285/© 2016 Elsevier Inc. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.cogpsych.2016.10.002&domain=pdf
http://dx.doi.org/10.1016/j.cogpsych.2016.10.002
mailto:cohend@uncw.edu
http://dx.doi.org/10.1016/j.cogpsych.2016.10.002
http://www.sciencedirect.com/science/journal/00100285
http://www.elsevier.com/locate/cogpsych

64 D.J. Cohen, P.T. Quinlan/ Cognitive Psychology 91 (2016) 63-81
1.1. The relative quantity task

The relative quantity task is a deceptively simple paradigm: On a typical trial, the participant must assess, as quickly and
accurately as possible, which of two digits is the larger. The variations on the specific form of this task are numerous, ranging
from the straightforward, simultaneous presentation of two Arabic digits (Dehaene, Dupoux, & Mehler, 1990; Hinrichs,
Yurko, & Hu, 1981; Moyer & Landauer, 1967), to paradigms that include priming components (Dehaene et al., 1998;
Ratinckx, Brysbaert, & Fias, 2005; Van Opstal, Gevers, De Moor, & Verguts, 2008), Flanker components (Notebaert &
Verguts, 2006), multiple dimensions (e.g., in numerical Stroop tasks; Pavese & Umilta, 1998; Ratinckx & Brysbaert, 2002;
Tzelgov, Yehene, Kotler, & Alon, 2000; Waldron & Ashby, 2001), and, so on. Nevertheless, the reaction time (RT) data from
the relative quantity task, and its variations, have revealed two effects that have proved foundational in all subsequent the-
ory development; these are the numerical distance effect and the size effect (see Fig. 1A). The numerical distance effect is char-
acterized by RTs (for correct responses) that monotonically decrease as the numerical distance between the two digits
increases. The size effect is that, for a fixed difference between two digits, correct RTs increase monotonically as the size
of the digits increase.

Moyer and Landauer (1967) conducted the classic experiment that identified the numerical distance effect and size
effects. The authors presented two Arabic digits, side-by-side, and asked participants to identify as quickly and accurately
as possible the numeral denoting the larger quantity. Moyer and Landauer (1967) explained the numerical distance effect
and size effect by proposing that numbers are represented as magnitudes that are similar to those in the physical world
and the discriminability of two perceived magnitudes is determined by the ratio of the actual magnitudes (i.e., these repre-
sentations obey Weber's law).

Since the original description of the numerical distance and size effects, various accounts have been put forward to
explain the psychological representations of numbers hypothesized by Moyer and Landauer (1967). All such accounts adopt
a general Signal Detection Theory framework. That is, these accounts generally assume that the quantity associated with a
given digit is represented on an internal continuum (e.g., an internal “number line,” Dehaene, 2003) and there exists some
perceptual variability (i.e., noise) associated with the placement of the digit on this continuum. Take, for example, the num-
ber “5.” All theories assume that each time an observer experiences this symbol, the observer will have a slightly different
“sense” of the quantity associated with “5.” So, sometimes the observer’s sense is more than 5 and sometimes less. Accord-
ingly, each digit’s quantity representation is captured by a distribution of values on the continuum that we term a psycho-
logical distribution of quantity (PDQ) (see Fig. 1B). The PDQ captures the perceptual noise associated with one’s understanding
of the quantity associated with a digit. The PDQs of successive digits are rank ordered and overlap (see Fig. 2).

In Signal Detection Theory, the degree of difficulty in distinguishing between two stimuli is determined by the amount of
overlap between their corresponding perceptual distributions: the greater the overlap, the more difficult it is to distinguish
between the two stimuli. This premise translates directly when discussing number representation. Most accounts explaining
the psychological representations of numbers, assume the difficulty in distinguishing between the quantities of two num-
bers is determined, primarily, by the amount of overlap between their PDQs (see Fig. 2). ‘Difficulty,’ in this context, is defined
by greater RTs and errors in the relative quantity task.

The fundamental differences between the key theories lie with the assumptions they make about the nature and spacing
of the PDQs on the mental number line (see Fig. 1). According to the linear account, successive quantity representations are
rank ordered at equal intervals and the different PDQs have the same variance (we call this account the Linear Theory, see e.g.,
Cantlon, Cordes, Libertus, & Brannon, 2009). The two other competing accounts of quantity representation are the Logarith-
mic Theory (Dehaene, 1992, 2003) and the Scalar Variance Theory (see Church, Meck, & Gibbon, 1983; Gallistel & Gelman,
1992; Meck & Church, 1983; Meck, Church, & Gibbon, 1985). The Logarithmic Theory also posits that the different PDQs have
the same variance, but claims that the means of the ordered PDQs are spaced on a logarithmic scale. As such, the means of
successive PDQs get closer together as the numbers increase (see Fig. 1B). In contrast, for the Scalar Variance Theory, the
means of the ordered PDQs are spaced linearly but their variances scale linearly (i.e., increase) with quantity (see Fig. 1B).

In the absence of providing a detailed model, intuitions about general patterns of performance suggest that the numerical
distance effect can be accommodated by all three theories because the PDQs of numerals denoting adjacent quantities (e.g.,
“5” and “6") overlap more than the PDQs of numerals denoting distant quantities (e.g., “5” and “1”). It is similarly apparent
that the Logarithmic Theory and Scalar Variance Theory accounts can accommodate the size effect. The size effect is hypoth-
esized to result because, for a given quantity distance (e.g., “1”) the PDQs of numerals denoting large quantities (e.g., “7” and
“8") overlap more than the PDQs of numerals denoting small quantities (e.g., “2” and “3”). For the Logarithmic Theory this is
true because the means of the PDQs for successive smaller quantities are farther apart than those for successive larger quan-
tities. For the Scalar Variance Theory this is true because the SDs of the PDQs for successive smaller quantities are smaller
than those for successive larger quantities. On first glance, though, the size effect sits less well with the Linear Theory.

This, in brief, is the current state of affairs with respect to explaining performance in the relative quantity task and the
evidence relevant to discussion of the underlying representation of integers. Here, we assess the validity of the stated models
and a new model; by (i) specifying the details of models of this task from encoding to response, (ii) simulating data based on
the specified details, and, (iii) and assessing the model fits against human data.
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