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a  b  s  t  r  a  c  t

Kernel-based  dimensionality  reduction  is  a widely  used  technique  in  medical  image  analysis.  To fully
unravel  the  underlying  nonlinear  manifold  the  selection  of  an  adequate  kernel  function  and  of  its  free
parameters  is  critical.  In practice,  however,  the kernel  function  is generally  chosen  as  Gaussian  or  poly-
nomial  and such  standard  kernels  might  not  always  be optimal  for a given  image  dataset  or  application.
In  this  paper,  we present  a  study  on the  effect  of the  kernel  functions  in  nonlinear  manifold  embed-
ding  of  medical  image  data.  To  this  end,  we  first  carry out a  literature  review  on  existing  advanced
kernels  developed  in the  statistics,  machine  learning,  and  signal  processing  communities.  In addition,
we  implement  kernel-based  formulations  of well-known  nonlinear  dimensional  reduction  techniques
such  as  Isomap  and  Locally  Linear  Embedding,  thus  obtaining  a unified  framework  for  manifold  embed-
ding  using  kernels.  Subsequently,  we  present  a  method  to automatically  choose  a kernel  function  and
its  associated  parameters  from  a  pool  of  kernel  candidates,  with  the  aim  to generate  the most  optimal
manifold  embeddings.  Furthermore,  we  show  how  the  calculated  selection  measures  can  be  extended
to  take  into  account  the  spatial  relationships  in  images,  or used  to  combine  several  kernels  to further
improve  the  embedding  results.  Experiments  are  then  carried  out  on  various  synthetic  and  phantom
datasets  for  numerical  assessment  of  the  methods.  Furthermore,  the  workflow  is  applied  to  real  data  that
include brain  manifolds  and multispectral  images  to demonstrate  the importance  of  the kernel  selection
in  the  analysis  of  high-dimensional  medical  images.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Manifold embedding is a widely used technique for the analysis
of high-dimensional medical image data. In particular, kernel-
based methods have received significant attention due to the
distinctive approach used for the nonlinear dimensionality reduc-
tion problem. More specifically, kernel methods apply a kernel
mapping onto a higher dimensional feature space where the
original nonlinear data becomes linear or near-linear [1]. As a
result, more complex high-dimensional data can be identified and
unfolded. More recently, it has been shown that another major
advantage of kernel-based manifold embedding is that it provides
a unified framework, i.e., many well-known techniques such as
Isomap [2], Locally Linear Embedding (LLE) [3], Multidimensional
Scaling (MDS) [4], can also be formulated as a kernel problem [5,6].
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A key challenge in working with kernel-based manifold embed-
ding, however, is using a kernel transformation that is appropriate
to the application and the associated type of nonlinearity. For
example, radial basis functions enable to pick out circles (or hyper-
spheres) in the high-dimensional space, while a linear kernel can
better detect lines (or hyperplanes). Despite the importance of this
problem [7], the choice of the kernel transformation has received
limited attention in the medical image analysis community thus far.
In practice, the application of kernel-based embedding is generally
achieved using the Gaussian or Polynomial kernels (e.g., [8–13]).
However, there is no guarantee that these standard kernels are
the best choices for a given dataset or application. The first goal
of this paper is therefore to revisit existing kernels in order to pro-
mote their use in the medical imaging community for more optimal
results.

While the introduction of new functions into the pool of ker-
nel candidates can potentially improve the manifold embedding,
given their number and the associated free parameters, the sub-
sequent empirical definition of the optimal kernel transformation
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for each image data type and application becomes infeasible in
practice. The second objective of this work is therefore to present
a new method to measure the quality of the manifold embedding,
and subsequently to automatically select the optimal kernel and
associated parameters.

Some of the existing works on the subject are application-
specific, such as in Ref. [14] where the labels of the data are used to
evaluate the preservation of the intra- and inter-class relationships.
However, the technique is only relevant for supervised applica-
tions. Other existing quality measures are in nature either local
[15–17] or global [18], which could respectively leave global and
local inconsistencies undetected. A solution would be to combine
local and global measures as proposed by [19], but the optimal
weighting of each term in the analysis also depends on the shape
of the manifold and associated nonlinearity. Alternatively, the rank
coefficient proposed in Ref. [20] has both a local and global nature
but it is based on the Euclidean inter-point distances of the embed-
ding space, which does not model well the nonlinear nature of
manifolds.

The third goal of this paper is to study the effect of different
kernels in manifold embedding on two typical high dimensional
problems in medical imaging, namely brain manifold embedding
and multispectral image dimensionality reduction. Brain manifold
embedding considers a population of brain volumes and gener-
ates a lower dimensional representation where the relationships
between subjects is easier to visualize and interpret [8,21–23]. In
this case, each image is considered as a point in the high dimen-
sional space, where the dimensionality in the space is defined by
the number of voxels.

Multispectral imaging is the other typical high dimensional
problem considered in this paper. Multispectral images can be
very useful for tissue characterization, since the different tissue
constituents often require different acquisition parameters and
protocol settings in order to be adequately highlighted. This gen-
erates a high-dimensional image stack. With the recent advances
in multispectral imaging hardware and sequence design, multi-
spectral imaging has gained significant popularity in both research
and clinical studies for various modalities [24–26] and applica-
tions [27–30]. However, the large number of image spectra that
can be obtained (dozens) means nonlinear dimensionality reduc-
tion is necessary to summarize all the available information in a
lower dimensional space, with minimal loss of information.

This manuscript is an extension of our previous work [31]. Dif-
ferences include a more detailed presentation of the methodology,
a kernel derivation of Isomap, LLE and MDS, a multiscale extension
of the quality assessment measure, a numerical evaluation with
synthetic manifolds, an application to brain manifold learning, and
a validation with a new multispectral dataset of the pancreas. This
paper is organized as follows: Sections 2.1 and 2.2 present a review
of the kernel principal component analysis (kPCA) method, as well
as of various advanced kernel transformations used in this study,
including kernel derivations of other known manifold embedding
techniques. Section 2.3 presents the quality measure and its multi-
scale extension for the assessment of manifold embedding, while
Section 2.4 describes a method to combine multiple kernels based
on this measure. Finally, a study of the effect of the kernels in
manifold embedding is presented in Section 3, based on various
synthetic, phantom and real image datasets.

2. Methods

2.1. Kernel PCA

KPCA [1] is a nonlinear dimensionality reduction technique,
which maps an input manifold Xp into a lower dimensional

representation Yq, q < p. With this method, the data {xi}N
i=1 is

transformed nonlinearly onto a feature space F by the mapping
� : Xp → F. This mapping is described by a kernel function, which
represents the inner product between the points in the feature
space. In an ideal scenario, this step allows the removal of the
underlying nonlinearity, which means the standard linear PCA can
be applied directly in the feature space. The covariance matrix of
the transformed data in the feature space is

C = 1
N

N∑
i=1

�(xi)�(xi)
T . (1)

The eigenvectors of C are computed by using the so-called ker-
nel trick. The advantage of this approach is that the mapping �
is never computed explicitly. Only transformations that enable
the dot product to be calculated in the original space by a kernel
function k are considered. The associated kernel matrix K is given
by

Kij = k(xi, xj) = 〈�(xi), �(xj)〉 = �(xi) · �(xj)
T .

To compute the eigenvectors of Eq. (1), the covariance matrix has
to be diagonalized by solving

Cv = �v.

Since

Cv = 1
N

N∑
i=1

�(xi)�(xi)
T v = �v,

the eigenvector v is

v = 1
N�

N∑
i=1

�(xi)�(xi)
T v = 1

N�

N∑
i=1

(�(xi) · v) �(xi)
T .

Because �(xi) · v is a scalar, all solutions v with � /= 0 lie in the
span of x1, . . .,  xN, i.e.,

v =
N∑

i=1

˛i�(xi),

thereby reducing the problem to finding the coefficients ˛i. This is
done by solving the eigenvalue equation

N�  ̨ = K˛,

where  ̨ = (˛1, . . .,  ˛N)T and Kij = k(xi, xj). Finally, to obtain the low
dimensional data representation, the data is projected onto the
eigenvector v.

Note that we assumed in Eq. (1) that the data in the feature space
has zero mean. If this were not the case, the kernel matrix would
be K̃ = HKH with the centering matrix H = IN − 1

N eeT , where IN is

the N × N identity matrix and e = (1,  . . .,  1)T ∈ R
N .

2.2. Kernel functions

An important step in kPCA is the choice of the kernel function
and its free parameters (e.g., bandwidth for the Gaussian kernel). In
this section, we  review some alternatives to the kernels more com-
monly used in the medical imaging community (e.g., Gaussian). Our
hypothesis is that by using a more comprehensive list of kernels, the
manifold embedding results can be improved by adapting the ker-
nel function to the data manifold and to the application. However,
in choosing the kernel functions, it is important that they conform
to some conditions so that they can be applied within the kPCA
framework. In particular, they must be symmetric, continuous and
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