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a  b  s  t  r  a  c  t

Establishing  relationships  among  brain  structures  and  cognitive  functions  is  a central  task  in  cognitive
neuroscience.  Existing  methods  to  establish  associations  among  a set  of  function  variables  and  a  set  of
brain  regions,  such  as dissociation  logic  and  conjunction  analysis,  are  hypothesis-driven.  We  propose
a  new  data-driven  approach  to structure–function  association  analysis.  We  validated  it  by  analyzing  a
simulated  atrophy  study.  We  applied  the  proposed  method  to a study  of aging  and  dementia.  We  found
that  the  most  significant  age-related  and  dementia-related  volume  reductions  were  in the hippocampal
formation  and  the supramarginal  gyrus,  respectively.  These  findings  suggest  a multi-component  brain-
aging  model.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

A central task in cognitive neuroscience is the establishment of
relationships among brain structures and neural activity on the one
hand, and cognitive functions or processes on the other. Such rela-
tionships are referred to as brain-behavior or structure–function
associations. Delineating brain-behavior associations is of funda-
mental importance to understand the neural bases of cognition.
The classic examples of brain-behavior association involve the neu-
ral bases of language [1]. Broca and Wernicke examined patients
with brain damage, who had difficulty with language as a result
(aphasia). Broca reported a lack of language production in patients
with damage to the posterior and inferior regions of the left frontal
lobe (Broca’s area); and Wernicke reported that patients who  have
damage to the posterior/superior aspect of the left temporal lobe
(Wernicke’s area) could no longer comprehend language. Putting
these two studies together, we have a brain-behavior association
involving two brain regions (Broca’s area and Wernicke’s area) and
two cognitive processes (producing language and comprehend-
ing language). Broca’s area is specialized for producing language,
whereas Wernicke’s area is specialized for comprehending lan-
guage.
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In this manuscript, we  focus on the problem of establishing asso-
ciations among a set of function variables (denoted by F) and a set
of brain regions (denoted by R). Two examples of such an analy-
sis are dissociation analysis [2–4] and conjunction analysis [5–8].
Both inferential methods have played important roles in cognitive
neuroscience.

One of the fundamental approaches to the demonstration of
structure–function associations in lesion-based brain studies is
to establish associations and dissociations [3,4]. An association
pattern is established when damage in brain region A disrupts
the performance of task ˛. A dissociation pattern is established
when damage in brain region A disrupts the performance of task

 ̨ but not that of task ˇ; in this case, region A and task  ̌ are
dissociated. A more firm approach to the demonstration of brain-
behavior associations is to establish a double-dissociation model
[2]. A double-dissociation pattern is established when damage in
brain region A impairs task  ̨ but not task ˇ, whereas damage in
region B impairs task  ̌ but not task ˛. In a double dissociation
analysis, investigators model interactions among two function vari-
ables, F˛ and Fˇ, and two  brain structures RA and RB. The observation
of double dissociation provides evidence of functionally distinct
neural systems, which is central to the delineation of underlying
mechanisms.

In conjunction analysis, the central question is “which brain
regions are damaged in all tasks?” For example, in a study involving
two function variables where F˛ represents the language produc-
tion deficit and Fˇ represents the language comprehension deficit,
our goal is to find brain regions that are damaged in patients with
language production deficit and language comprehension deficit.
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Fig. 1. A Bayesian network represents double dissociation in a neuropsychology study.

Existing methods for the elucidation of brain-behavior asso-
ciations have two major limitations. First, these methods are
confirmatory; that is, they are designed to confirm a particular
hypothesis, rather than compare models. Davies recognized this
limitation when he said “None of this be allowed to suggest that
double dissociation rules out the possibility of any kind of alterna-
tive explanation” [9]. For example, consider a study with model M1,
in which damage in brain region A impairs task  ̨ but not task ˇ,
whereas damage in region B impairs task  ̌ but not ˛. This model
may  reasonably explain the data observed in this study; however,
this analysis ignores the possibility that there exist one or more
additional models that offer more-plausible explanations of these
data.

The second major limitation of existing methods is their focus on
functional specialization. Functional specialization and functional
integration are two fundamental principles of brain functional
organization [10]. Functional specialization posits that a brain
region is specialized for some aspect of a cognitive process,
whereas functional integration emphasizes interactions among
brain regions. Existing approaches do not consider regional interac-
tions and therefore cannot detect functional-integration patterns.

We  propose a new method, Bayesian brain-behavior model-
ing (BBM), for the delineation of brain-behavior associations. BBM
directly models the joint-probability distribution among brain
regions and task variables, and directly addresses the two major
limitations of existing methods for brain-behavior associations.
First, BBM has a model-comparison mechanism: from a set of can-
didate theories (the model space), BBM searches for the model that
is most consistent with the observed data. Second, BBM gener-
ates a network model, which provides a natural framework within
which to explore functional integration: brain regions are modeled
as nodes, and interactions are modeled as edges between nodes.

As a data-driven approach, BBM accepts, but does not require,
the specification of a prior model. BBM can reveal arbitrary inter-
actions among brain regions and function variables, not limited to
the dissociation pattern or conjunction pattern.

2. Methods

The overarching goal of BBM is to delineate structure–function
associations. Let RA denote a feature associated with brain region A,
such as the presence of activation in a functional MR (fMR) experi-
ment, or the presence of a lesion or morphological feature manifest
on structural MR.  Let F˛ denote the functional assessment of a
process  ̨ (e.g., performance on a particular task); F˛ could also rep-
resent the presence or absence of a disorder, such as Alzheimer’s
disease. In this framework, we model a structure–function associ-
ation as an association between {RA} and {F˛}.

2.1. Background: Bayesian networks

BBM is based on Bayesian network (BN) models [11]. A Bayesian
network is a probabilistic graphical model that specifies a joint
probability distribution over a set of variables V = {X1, X2, . . .,  Xn}. A
Bayesian network B consists of two  components: a structure S, and
parameters �;  i.e., B = (S, �).  The structure of the Bayesian network
describes the probabilistic associations among the variables, and is
represented as a directed acyclic graph. Nodes in this graph repre-
sent variables of interest, such as brain regions or clinical variables.
A directed edge in this graph from a variable Xi to Xj, written as
Xi → Xj, indicates that the variables Xi and Xj are associated, that Xi
is a parent node of Xj, and that Xj is a child node of Xi. Each variable
in a Bayesian network is associated with a conditional-probability
distribution Pr(Xi|pa(Xi)), where pa(Xi) represents the parent set of
Xi. A discrete Bayesian network can represent any joint distribution
over these discrete variables [11].

Fig. 1 shows a simple example of a Bayesian network. There are
four variables in this Bayesian network: two brain regions (RA and
RB) and two  function variables (F˛ and Fˇ). This Bayesian network
represents a scenario in which F˛ is probabilistically determined by
the state of region RA, and Fˇ is probabilistically determined by that
of RB; therefore, in this network, pa(F˛) = {RA} and pa(Fˇ) = {RB}.

When variables are categorical, Pr(Xi|pa(Xi)) can be represented
as a conditional probability table. Let �ijk = Pr(Xi = k|pa(Xi) = j) be the
conditional probability of Xi assuming state k given that its par-
ents, pa(Xi), assume joint state j. If Xi does not have parents, then
�ijk is the marginal probability distribution of Xi. � = {�ijk} repre-
sents the parameters of a Bayesian network, from which the joint
distribution over all variables can be computed. In Fig. 1, the condi-
tional probability Pr(F˛ = abnormal|RA = damaged) = 0.8 means that
the probability of a subject’s having abnormal F˛ is 0.8 when region
RA is damaged.

A critical notion in Bayesian network modeling is that of a
Markov blanket. In probabilistic terms, the Markov blanket of node
X, denoted by mb(X), is the minimum set of variables that renders
X conditionally independent of all other variables in the Bayesian
network. In the context of predicting the state of X based on knowl-
edge of a subset of the variables in a Bayesian network, we  achieve
greatest accuracy when we know the states of the Markov blan-
ket of X. That is, nodes in the Markov blanket of X are jointly most
predictive of X.

One of the advantages of the Bayesian network representation
is its powerful inferential capability [11]. The inference task is to
find the posterior distribution of a set of outcome variables, given
values for evidence variables. For example, in Fig. 1, we may be
interested in the posterior probability that F˛ is abnormal, given
that RA is damaged. In this query, the outcome variable is F˛, and
the evidence variable is RA. Standard BN inference algorithms [12]
can efficiently calculate such queries.
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