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a  b  s  t  r  a  c  t

Supervised  machine  learning  is  a powerful  tool  frequently  used  in  computer-aided  diagnosis  (CAD)  appli-
cations.  The  bottleneck  of  this  technique  is its demand  for fine  grained  expert  annotations,  which  are
tedious  for  medical  image  analysis  applications.  Furthermore,  information  is  typically  localized  in diag-
nostic  images,  which  makes  representation  of  an  entire  image  by a  single  feature  set problematic.  The
multiple  instance  learning  framework  serves  as a  remedy  to these  two  problems  by allowing  labels  to
be  provided  for groups  of  observations,  called  bags, and assuming  the  group  label  to  be the  maximum
of  the  instance  labels  within  the  bag.  This  setup  can effectively  be applied  to  CAD  by  splitting  a  given
diagnostic  image  into  a Cartesian  grid, treating  each  grid  element  (patch)  as  an instance  by representing
it  with  a feature  set,  and  grouping  instances  belonging  to the  same  image  into  a bag.  We  quantify  the
power  of existing  multiple  instance  learning  methods  by evaluating  their  performance  on  two  distinct
CAD  applications:  (i) Barrett’s  cancer  diagnosis  and  (ii) diabetic  retinopathy  screening.  In the  experi-
ments,  mi-Graph  appears  as  the  best-performing  method  in  bag-level  prediction  (i.e.  diagnosis)  for  both
of these  applications  that  have  drastically  different  visual  characteristics.  For  instance-level  prediction
(i.e.  disease  localization),  mi-SVM  ranks  as  the  most  accurate  method.

©  2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Advances in image analysis and machine learning gradually
make available more robust algorithms for extracting information
from data. An appealing application at the intersection of these
two disciplines is computer-aided diagnosis which aims to auto-
mate disease diagnosis from images [27]. CAD tools have been
shown to be useful to aid the pathologist by pointing out important
regions in large biopsy tissue images [11], providing decision sup-
port by calculating informative metrics such as cell counting [18],
and quantifying the disease risk [21].

A major drawback of many CAD algorithms is their demand for
fine-grained expert annotations during training. For tumor diagno-
sis, pathologists need to indicate the tumor regions, and for diabetic
retinopathy, small structures such as microaneurysms have to
be annonated by opthalmologists. The use of weakly supervised
machine learning techniques can drastically reduce the annotation
effort, while keeping prediction performance at an acceptable level.
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A common characteristic of diagnostic imaging is the locality
of discriminative information. For instance, in cancer histology, a
small region within a large slide often determines the final grad-
ing, and all the remaining slide is redundant. Similarly, in diabetic
retinopathy screening, small structures, such as microaneurysms
are much richer in diagnostic information than the texture of the
entire image. Hence, application of the standard supervised learn-
ing setup to these cases would be problematic. Given a diagnostic
image, representing it by a single feature vector would require
tedious feature engineering, since when standard feature sets are
applied, the uninformative areas in the image would overrule the
informative ones. On the other hand, dividing the image into small
patches, and representing each patch by a feature vector would
result in severe class imbalance.

Multiple instance learning (MIL) [19] provides a learning frame-
work that both allows weak supervision and inherently handles
the locality of information problem. In MIL, ground-truth labels are
available only for groups of observations, called bags. A bag with
a positive label indicates that there exists at least one observation
within that bag, whose label is positive. For a negatively labeled bag,
on the other hand, all observations are known to have a negative
label. This framework can directly be applied to CAD by defining
each diagnostic image (tissue slide or fundus image) as a bag, and
each of its regions (e.g. patches in a Cartesian grid) as an instance.
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Diseased cases with local lesions are then represented by a positive
bag, and healthy cases by a negative bag.

Even though some previous work reports MIL  solutions tailored
to specific CAD problems [21,28,29], the utility of a large set of
existing MIL  approaches in these applications has not yet been
evaluated. Furthermore and more importantly, the generalizability
of their success on various CAD problems has not yet been quan-
tified. In this paper, we address these two issues by providing a
benchmarking study using a large list of MIL  methods1 on two
CAD applications that have clearly distinct visual characteristics: (i)
diagnosis of Barrett’s cancer from H&E stained histology images and
(ii) diabetic retinopathy screening from eye fundus images. Among
the methods under comparison, mi-Graph [33] outperforms the
others in both applications in cancer diagnosis (i.e. prediction of bag
labels). On the other hand, in the harder problem of cancer local-
ization (i.e. prediction of instances), mi-SVM [2] gives the highest
generalization performance.

2. Prior art

2.1. Cancer diagnosis from histology images

There has been a large volume of studies on application of
machine learning methods to histology cancer diagnosis (see [11]
for a comprehensive review). Demir et al. [10] propose the classi-
fication of brain tumors by constructing graphs from cell topology,
and representing the tumor image by a set of graph features.
Doyle et al. [8] classify prostate cancer grades from graph-based
(e.g. minimum spanning tree of cells), morphological (e.g. nuclear
density), and textural features (e.g. Gabor filter responses) using
the standard multiclass support vector machine (SVM). Alterna-
tively, Huang et al. [12] show that differential box counting leads
to effective prostate cancer grading. Wang [25] demonstrates the
successful application of Markov random fields to segmentation of
lung tumors. Hang et al. [5] propose a method that combines sparse
coding and multiscale histogram intersection kernels for diagnosis
of kidney renal carcinoma and glioblastoma. Kandemir et al. [13]
perform diagnosis of Barrett’s cancer using mi-Graph.

2.2. Automated diabetic retinopathy screening

Agurto et al. [1] introduce an automated diabetic retinopathy
screening method that characterizes the texture of regions of inter-
est by their amplitude and frequency properties. Giancardo et al. [9]
detect microaneurysms from morphological heuristics, and then
apply a standard SVM to predict the disease status. Quellec et al.
[22] introduce a content-based image retrieval (CBIR) system for
diabetes detection by formulating a probabilistic interpretation of
a set of wavelets. In a follow-up study, Quellec et al. [21] improve
the state-of-the-art in diabetes detection by extending their CBIR
method with multiscale features.

2.3. MIL  for computer-aided diagnosis

MIL  has comparatively recently started to be used for computer
aided diagnosis. Some exemplary studies are as follows. Zhao et al.
[32] apply the MILES [6] method to patches of slides of 10 dif-
ferent tissue types. Zhang et al. [30] use GPMIL of Kim et al. [15]
for classification of skin biopsies. Xu et al. [28,29] use a multiclass
extension of MILBoost [24] for grading of prostate tumors. Quellec

1 The source code of the MIL  methods in our comparison list is available under:
http://hci.iwr.uni-heidelberg.de/Staff/mkandemi/MILBundle.tar.gz.

et al. [21] build their aforementioned multiscale CBIR method for
the MIL  setup.

3. The diagnosis pipeline

We use the same automated diagnosis pipeline for both appli-
cations. We  split a given diagnostic image into a regular grid of
patches. We  then construct an instance from each patch by extract-
ing a set of features. A group of instances belonging to the same
diagnostic image is treated as a bag. The label of the bag is assumed
to be +1 if it includes the target disease, and −1 otherwise. Conse-
quently, we predict the disease status of a given image (bag) using
one of the MIL  methods in comparison. Fig. 1 illustrates the pipeline.

For both applications, we represent an image patch with a set of
intensity histogram and texture features as listed in Table 1. For Bar-
rett’s cancer diagnosis, we  additionally use a set of cell features. We
segment cells using supervised pixel classification and watershed
transform as described in [13]. We then extract a set of intensity
and morphology features from each cell (see Table 2 for the com-
plete list). Finally, we  augment the feature vector of each patch by a
set of summary statistics of features of cells lying within that patch,
as listed in Table 3.

4. Multiple instance learning methods

Let X = [x1, . . .,  xN] be a data set consisting of N instances, each
of which is a D-dimensional feature vector: xi = [x(1)

i
, . . .,  x(D)

i
]. The

data set is assumed to be partitioned into B bags: X =
⋃B

b=1Xb,
such that Xb

⋂
Xc = ∅ , ∀ b /= c, where each bag b consists of

Nb instances: Xb = [xb1, . . .,  xbNb
]. Let Y = [Y1, . . .,  YB] be the vec-

tor of the corresponding binary bag labels Yb ∈ { −1, + 1}. Labels
of instances are collected into the vector y = [y1, . . .,  yN], which
follows the same partitioning as instances y =

⋃B
b=1yb, such that

yb
⋂

yc = ∅ , ∀ b /= c, where yb = [yb1, . . .,  ybNb
]. Let B+ = {b|Yb =

+1} and B− = {b|Yb = −1} denote sets of positive and negative bags,
respectively. Finally, I( · ) denotes the indicator function that gives
1 if its argument is true, and 0 otherwise. The central assumption
of the MIL  setup is that the label of a bag is the maximum of the
labels of the instances in that bag: Yb = max(yb), which we call as

Table 1
Features extracted from patches of Barrett’s cancer histology and fundus images.

Color features

1 Intensity histogram of RGB channels for 26 bins

Texture features

2 Mean of local binary pattern histograms of 20 × 20-pixel grids
3  Mean of SIFT descriptors
4 Box count for grid sizes 2, 3, . . .,  8

Table 2
Features extracted from each segmented cell.

1 Central power sums for exponents 1, 2, 3 and 4
2 Area, radius, perimeter, and roundness of the segment
3  Maximum, mean, and minimum intensity, and intensity,

covariance, variance, skewness, and kurtosis within the region and
within its 30-pixel-wide belt for each color channel

4  Region axes, principal axes, kurtosis, minimum, maximum, and
power sums for exponents 1, 2, 3, 4

Table 3
Features extracted from cells located within each Barrett’s cancer image patch.

Minimum, maximum, mean, standard deviation,
skewness, and kurtosis of features (given in Table 2)
of all healthy and cancer cells in a patch
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