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a  b  s  t  r  a  c  t

Computerized  image  analysis  (IA)  can provide  quantitative  and  repeatable  object  measurements  by
means  of methods  such  as segmentation,  indexation,  classification,  etc. Embedded  in  reliable  automated
systems,  IA could  help  pathologists  in their daily  work  and  thus  contribute  to  more  accurate  determina-
tion  of prognostic  histological  factors  on  whole  slide  images.  One  of  the  key concept  pathologists  want
to  dispose  of now  is  a numerical  estimation  of  heterogeneity.  In this  study,  the  objective  is  to propose  a
general framework  based  on  the diffusion  maps  technique  for  measuring  tissue  heterogeneity  in whole
slide  images  and  to  apply  this  methodology  on breast  cancer  histopathology  digital  images.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Research in signal and image analysis is going on for many
decades now and is directly linked with the exceptional develop-
ment of computer technologies. But after all these years, it must be
admitted that there are not so many real working applications in
practice, especially in the medicine area where the expert’s eye
is still more accurate and faster than many automated systems
dealing with large amounts of data. However, reliable automated
systems could really help pathologists in their daily work as the
number of pathological cases increases as far as the early screen-
ing campaigns do. We  know that computerized image analysis (IA)
can provide quantitative and repeatable object measurements by
means of methods such as segmentation, indexation or classifica-
tion. When IA is used to analyze images of histological sections
in the medical research, the typical objects to be processed are
nuclei, vessels, cell groups or tumors. IA allows these structures
in histopathological images to be detected, to be analyzed auto-
matically in terms of their size or shape, in order to assess their
proportion or to compute their staining intensities. Indeed, IA can
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contribute to more accurate determination of prognostic histologi-
cal factors by pathologists [1] but its action is limited to provide
quantitative information as no multi-purpose method exists for
segmenting or classifying images with a wide range of color or
shape configurations, with which pathologists are familiar. The
advent of digital scanners leads to generate whole slide images
(WSI) from histological sections acquired at a full resolution. A
main challenge this technology presents is the size of data to be
processed which are generally very large and requires a huge stor-
age capacity and processing needs. Conversely, the main advantage
is that the complete tissue structure is easily accessed. In parallel,
the aggressiveness of a cancer could result in morphological and
architectural changes that can be observed in the tissue structure,
and so be characterized by the object distribution on the slide, by
the cross relations between objects and by the texture. This kind of
information could contribute to evaluate a well-known concept:
heterogeneity. Frequently addressed in signal processing, espe-
cially in terms of “entropy”, but more rarely in the field of imaging
[2], the objective here is to propose a framework for measuring
tissue heterogeneity in WSI  and apply this methodology on breast
cancer histopathology digital images. The key idea in this work is to
not rely on segmentation (e.g. [1,2]) of individual structures to char-
acterize heterogeneity, but to make use of classification of squared
sub-images later called ‘patches’. In some previous works dedicated
to the development of a computer-aided diagnosis system (CADS)
based on image retrieval and classification [3,5], we have used a
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method coming from spectral graph theory, the Diffusion Maps
(DM) [6], to process WSI  split in small squares called ‘patches.’ The
DM algorithm, in which eigenvalues and eigenvectors of a Markov
matrix defining a random walk on the data are computed, allows to
both cluster non-linear input data thanks to its inner classification
properties preserving local neighborhood relationships, but also to
reduce the input data dimensionality in a space (usually a 2D or
3D space) where it is therefore possible to compute euclidean dis-
tances between the objects to be analyzed [6,8]. To briefly describe
the complete CADS we are developing, a first step consists in build-
ing a knowledge database involving many features extracted from a
set of well-known images; this is an ‘off-line’ procedure conducted
once. These features are represented by vectors of non-linear data
acting as a signature. In a second step, signatures are obtained
from new unknown images and then compared with those already
present in the database; this is an ‘on-line’ procedure that has to be
conducted each time a new image is processed. In a last step, before
rendering a qualitative measure of similarity/dissimilarity between
the supervised images and new unknown images, a feedback pro-
cedure would have to be processed in order to eliminate most of
the artifacts that usually corrupt initial knowledge databases. But
this general approach, especially with the DM algorithm, can also
be derived to analyze a set of image patches coming from any WSI,
with just the goal to compare their feature vectors. In this paper, we
focus on a way to characterize the tissue heterogeneity at a regional
level by working on the projected coordinates of image patches in
a reduced 3D space.

2. Materials and methods

Images used to illustrate this study come either from histolog-
ical sections or tissue microarrays (TMAs) of breast cancer stained
according to the Ki67 protocol and the Hematoxylin–Eosin-Saffron
protocol (HES). They are acquired at a 20× magnification on a
microscopic scanner device (ScanScope CS; Aperio Technologies).
The resolution of WSI  is 0.5 microns/pixel and the typical image size
of any histological section can reach 50,000 × 40,000 pixels, corre-
sponding to an uncompressed file of size 5.6 Gb. They are stored
in the TIFF 6.0 file format (compression 30%). In each WSI  some
regions of interest (ROI), chosen by the pathologist, are then split
in connected blocks of size 50 × 50 pixels, called “patches”, and each
patch is associated with a numerical signature expressed as a fea-
ture vector. Tools developed here are written in Python language
with the help of specialized modules (PIL: Python Imaging Library,
SciPy-Numpy, Matplotlib, Mahotas. . .).

2.1. Features extraction

The feature vectors embed some statistical measures obtained
from color components and some texture parameters. In this study,
61 numerical values per component were calculated from up to
two color spaces (RGB for Ki67 images and RGB + H&E color decon-
volution for HES images [11]) plus 18 values obtained from the
excess-red component (2R-G-B). From any given component, the 9
statistical features are the mean, median, mode, Skewness, Kurtosis
parameters with also the 20%–40%–60%–80% quantiles of its cumu-
lated histogram (initially reduced to 64 values). The 52 texture
features correspond to the classic 13 Haralick parameters obtained
in four directions [12]. We  also added to the texture features 18 new
values coming from the intrinsic statistical parameters of regional-
ized variables in three directions (0◦–45◦–90◦). They are derived
from the nugget, sill and range of a geostatistical method [13].
Finally, each feature vector thus contains either F = 201 (61 × 3 + 18)
or F = 323 (61 × 5 + 18) numerical values, here with the predomi-
nance of texture features in order to be quite independent from the

color staining variations encountered between different laborato-
ries (and often inside the same laboratory).

In order to later compare feature vectors, and consider-
ing the sparse numerical range of their values, the symmetric
Kullback–Leibler distance [3,4] has been retained for its ability to
easily manage such a case, while remaining fast to implement. The
distance between two  vectors p1,p2 of length F is given by:

DKL(p1, p2) = 1
2

F∑
j=1

p1j · log

(
p1j

p2j

)
+ p2j

(
p2j

p1j

)
(1)

2.2. Dimensionality reduction

In any classical CADS, one of the key components is a visualiza-
tion tool showing relationships between supervised images, stored
in a knowledge database, and new images that are presented to
the system. Typically, these relationships may be expressed as a
connected graph in a 2D or 3D space where one hopes to find dis-
tinctive clusters corresponding to histological types or sub-types.
It is therefore mandatory to reduce dimensionality from F (201 or
323 in our application) to 2 or 3 dimensions. With feature vec-
tors containing non linear data as we  are faced with, authors in
[7,8] have shown that it was not appropriate to perform a princi-
pal component analysis (PCA). Instead, methods based on Spectral
Connectivity Analysis (SCA) such as the Diffusion Maps, involving
eigenvalues and eigenvectors of a normalized graph Laplacian, are
well suited for this task. Let X = {x1,x2,. . .,xn} be a set of n patches
that we  assimilate to a fully connected graph G, that means a dis-
tance function is computed for each pair {xi,xj}. A n × n kernel P is
obtained from a Gaussian function whose coefficients are given by:

p(xi, xj) = w(xi, xj)
d(xi)

(2)

with

d(xi) =
∑
xk ∈ X

w(xi, xk) (3)

and

w(xi, xj) = e−
(

DKL (xi,xj)
∈

)
(4)

In fact, p(xi,xj) may  be considered as the transition kernel of the
Markov chain on G. In other words, p(xi,xj) defines the transition
probability for going from xi to xj in one time step. The eigen-
vectors �k of P, ordered by decreasing positive eigenvalues, give
the practical observation space axes. It must be noticed that �0 is
never used since linked to the eigenvalue � = 1 (i.e. the data set
mean or trivial solution). A 3D projection can be then obtained
along axes (�1,�2,�3). Choosing ε in w(xi,xj) is an empirical task
which should permit a moderate decrease of the exponential in Eq.
(4); some works [8] use the median value of all DKL(xi,xj) distances
whereas other works [6] use the mean distance obtained in the k
nearest neighbors from a subset of X, which finally yields to quite
the median value in many cases. We  have retained the first solu-
tion for its simplicity and to lessen the overall computational time.
Fig. 1a–c show the resulting projections obtained from the DM  algo-
rithm for 300 patches of fibroadenoma with ε = 0.5 × medianValue,
ε = medianValue and ε = 2 × medianValue. One can see that the
general shapes of point clouds are not the same but, due to the
inner classification properties of DM,  we have shown that the local
neighborhood relationships were preserved in terms of histological
types/sub-types [9].
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