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a  b  s  t  r  a  c  t

This  work  investigates  the  capability  of supervised  classification  methods  in detecting  both  major  tis-
sues  and subcortical  structures  using  multispectral  brain  magnetic  resonance  images.  First,  by  means  of
a  realistic  digital  brain  phantom,  we  investigated  the  classification  performance  of  various  Discriminant
Analysis  methods,  K-Nearest  Neighbor  and  Support  Vector  Machine.  Then,  using phantom  and  real  data,
we  quantitatively  assessed  the benefits  of integrating  anatomical  information  in the classification,  in  the
form  of voxels  coordinates  as additional  features  to the  intensities  or  tissue  probabilistic  atlases  as  priors.
In addition  we  tested  the  effect  of  spatial  correlations  between  neighboring  voxels  and  image  denoising.
For  each  brain  tissue  we measured  the  classification  performance  in terms  of global  agreement  percent-
age,  false  positive  and  false  negative  rates  and kappa  coefficient.  The  effectiveness  of  integrating  spatial
information  or a tissue  probabilistic  atlas  has been  demonstrated  for the  aim  of accurately  classifying
brain  magnetic  resonance  images.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Tissue classification is an important and challenging task in the
processing and analysis of brain magnetic resonance (MR) images.
In the last two decades, a large number of studies have been ori-
ented in finding volume changes of the major brain tissues – gray
matter, white matter and cerebrospinal fluid – in the aging process
or in the occurrence and progression of specific diseases [1]. Cur-
rently, there is a growing interest in understanding the involvement
and the possible morphological changes of minor brain structures
both in normal aging processes and in the presence of neurodegen-
erative disorders [2–4].

Techniques for tissue classification can be broadly divided into
supervised and unsupervised depending on the use or not of a
training data set. Moreover, some techniques are based on one MR
parameter only, commonly a high resolution T1-weighted image,
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others are multispectral with the aim of combining T1, T2 and
PD-weighted information or other image types such as inversion
recovery and fluid attenuation inversion recovery [5].

The classification of brain minor structures presents a higher
degree of difficulty due to a weaker contrast of these structures
with adjacent tissues, which limits intensity-based recognition.
Various approaches have been followed to segment these struc-
tures. Among the most widely used and freely available methods
we mention FreeSurfer and FSL-First. FreeSurfer is a suite of tool for
the analysis of neuroimaging data, and one of the first software to
provide the segmentation of subcortical structures. The algorithm
is essentially based on Markov Random Fields, a statistical method-
ology used to model the local spatial relationships between voxels
as described in detail in [6–8]. FSL-First is a tool for subcortical seg-
mentation, part of the FSL software library [9], that uses a statistical
model of object shape in combination with intensity information
[10].

Discriminant Analysis is probably the most consolidated statis-
tical methodology for classification, based on an approximation of
the probability density function of the signal and on the Bayes deci-
sion rule [11]. Among nonstatistical methodologies, the K-Nearest
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Neighbor (KNN), the Artificial Neural Network [12,13] and the Sup-
port Vector Machine (SVM) [14] have been effectively used for
segmentation purposes.

Atlas-based approaches exploit anatomical information by
means of atlases to be matched to the study one wishes to segment.
For a thorough update review, the readers may  refer to Cabezas et al.
[15] who elaborately discuss a probabilistic atlas-based segmenta-
tion that shares some similarities with our scheme. A segmentation
framework based on the combined use of a statistical and a topo-
logical brain atlas has been proposed by Bazin and Pham [16].

Other methodologies aimed to exploit the spatial voxel corre-
lation have been proposed to be used in conjunction with pattern
recognition techniques. For instance, Anbeek et al. [17] added voxel
coordinates as an extra feature to the intensity model, which in turn
was applied to a KNN classifier. Cutillo and Amato [18] proposed
some techniques akin to the Discriminant Analysis to account for
the local spatial correlation among voxels.

In this context, for the simultaneous classification of major
tissues and subcortical structures, we focused our attention on
supervised methods suitable to work with multiple input channels
represented by MR  images acquired with different contrasts. In the
first part of this work we attempted to answer the following ques-
tion: “Is it possible to classify brain tissues and subcortical brain
structures on the basis of image contrast using a trained statistically
based methodology and multispectral data?” By employing a gold-
standard phantom data, we compared several methods belonging
to the family of Discriminant Analysis techniques apart from two
nonstatistical methods, i.e., KNN and SVM. In the second part of
the paper, the performance of the classification methods has been
quantitatively assessed when the classification scheme incorpo-
rates spatial information about tissues: x, y, z coordinates of image
voxels have been considered as spatial features in addition to the
intensity features for Discriminant Analysis methods and KNN. As
an alternative, the use of a probabilistic atlas for all the intracra-
nial brain tissues has been considered as prior spatial information
for Discriminant Analysis methods. Results on synthetic data, and
a comparison with FSL-First are reported and discussed. For the
quantitative evaluation of the various classification methods the
present work made use of a digital brain phantom as our gold
standard. We  considered a recently developed phantom, claimed
to simulate the actual brain with a larger number of tissues and
an increased realism compared to currently available alternatives
[19]. To test robustness of the considered approaches on real data,
a set of ten real studies has been included into the evaluation.

The paper is organized as follows. Section 2 describes the syn-
thetic and real data used in this study, and the proposed methods
for the MRI  data classification. Section 3 presents the experiments
conducted to evaluate the performance of the classification meth-
ods with and without the inclusion of spatial information. Section
4 contains a discussion of the results and Section 5 the conclusions.

2. Materials and methods

2.1. MRI  data

A realistic digital brain phantom [19], available at
http://lab.ibb.cnr.it/, is used to evaluate and measure the per-
formance of the classification methods. The following 17 classes
are defined in the phantom as listed in Table 1: 11 intracranial
tissues (Gray Matter, White Matter, Cerebro Spinal Fluid, Pallidus,
Putamen, Thalamus, Caudate Nucleus, Red Nucleus, Dentate
Nucleus, Substantia Nigra and Intracranial Connective), and five
extracranial ones (Fat, Muscle, Vitreous Humor, Extracranial Con-
nective and Extracranial Fluid); a further class (LowPD) comprising
intra- and extra-cranial voxels characterized by a low proton

Table 1
List of tissues included in the digital brain phantom. Their abbreviation and the 1 mm
resolution volumes are also shown.

Tissue Abbreviation Volume (cc)

Gray Matter GM 854.86
White Matter WM 572.62
Cerebro Spinal Fluid CSF 182.45
Pallidus PAL 3.99
Putamen PUT 9.73
Thalamus THA 13.95
Caudate Nucleus CN 10.35
Substantia Nigra SN 1.19
Red  Nucleus RN 0.66
Dentate Nucleus DN 1.67
Intracranial Connective ICC 20.04
Fat  FAT 409.18
Muscle MUS  552.09
Vitreous Humor VH 14.25
Extracranial Connective ECC 54.20
Extracranial Fluid ECF 16.54
LowPD LPD 825.68
All  3543.45

density value and not otherwise assigned to any other class is
included. The model contains 256 × 256 × 150 near-isotropic
0.9375 mm × 0.9375 mm × 1 mm  voxels; each voxel of the model
is labeled according to its assignment to a particular class. The
corresponding simulated signals are provided in the form of
T1w (510/15ms TR/TE) and PDw–T2w (1867/15-90ms TR/TE) axial
slices with a slice thickness selectable between 2 and 5 mm for a
conventional spin-echo sequence, and in 1 mm thick axial slices
(TR = 9.9 ms,  flip angle = 10◦, TE = 3.5 ms)  for a 3D T1w FFE sequence.

For the first experiment two multispectral datasets with 4 mm
and 2 mm slice thickness have been generated from the phan-
tom; 2 mm  is the minimum slice thickness for the 2D multislice
spin-echo simulation. While the original model is composed of 150
slices, the MR  signals include 37 slices of thickness 4 mm and 75
slices of thickness 2 mm.  Then, starting from the original model,
we reassigned voxel labels by grouping the slices 2 by 2 and 4 by 4,
respectively. In the case of non-pure 2 and 4 mm resolution voxels
(i.e., voxels composed of 1 mm resolution voxels corresponding to
different tissues), their labels have been assigned by a voting strat-
egy based on the highest label occurrence for the group of selected
slices. In case of a tie among two  or more tissues, the voting strategy
is applied to a neighborhood of the voxel sized 3 × 3 in the same
axial slice. The voxels and their tissue labels form the ground-truth.

The second experiment considers 3D T1w FFE and PDw–T2w spin-
echo signals. As the FFE volume includes 150 slices, the PDw–T2w
volume has been resliced to obtain 150 slices using a linear inter-
polation.

The digital brain phantom model serves as a reference to eval-
uate the performance of the classification methods as well as to
derive the training dataset needed by supervised methods. To avoid
the estimation bias, which may  arise when the training and test
datasets coincide, N voxels were randomly selected from the dig-
ital model as a training dataset and the actual classification was
performed on the remaining voxels. We  chose N = 100,000, which
is 10% of the full volume at 4 mm resolution. Each tissue was guar-
anteed to have the same percentage of its voxels in the training set.
The value of N was  chosen through some experiments based on the
classification of the digital phantom: note that no significant vari-
ations were observed for higher values of N. In order to avoid the
influence of a particular realization of noise, several experiments
with the same N were conducted with different realizations of
noise; however, the results did not vary significantly. Incidentally,
using a fraction of the total volume as the training dataset speeds
up the training process of the classification methods such as the
SVM, where the computational cost of the training step becomes
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