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a b s t r a c t

On a traditional view of cognition, we see the agent acquiring stimuli, interpreting these in some way,
and producing behavior in response. An increasingly popular alternative is the predictive processing
framework. This sees the agent as continually generating predictions about the world, and responding
productively to any errors made. Partly because of its heritage in the Bayesian brain theory, predictive
processing has generally been seen as an inherently Bayesian process. The ‘hierarchical prediction
machine’ which mediates it is envisaged to be a specifically Bayesian device. But as this paper shows,
a specification for this machine can also be derived directly from information theory, using the metric
of predictive payoff as an organizing concept. Hierarchical prediction machines can be built along purely
information-theoretic lines, without referencing Bayesian theory in any way; this simplifies the account
to some degree. The present paper describes what is involved and presents a series of working models. An
experiment involving the conversion of a Braitenberg vehicle to use a controller of this type is also
described.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

On a traditional view of cognition, we see the agent acquiring
stimuli, interpreting these in some way, and producing behavior
in response. An increasingly popular alternative is the predictive
processing (also known as predictive coding) framework. This sees
the agent as continually generating predictions about the world,
and responding productively to any errors made (Brown, Friston,
& Bestamnn, 2011; Clark, 2016; Friston, 2005; Friston, 2010;
Hohwy, Roepstorff, & Friston, 2008; Huang & Rao, 2011; Jehee &
Ballard, 2009; Knill & Pouget, 2004; Lee & Mumford, 2003; Rao &
Ballard, 1999; Rao & Ballard, 2004). Clark characterizes this as
‘the emerging unifying vision of the brain as an organ of prediction
using a hierarchy of generative models’ (Clark, 2013a, p. 185).1

Granting that we can view actions as predictions put into a behav-
ioral form, the proposal has the effect of unifying interpretive and
behavioral functionality (Brown et al., 2011; Friston, Daunizeau, &
Kiebel, 2009).2 The model is also well positioned to use information
theory (Shannon & Weaver, 1949; Shannon, 1948) as a way of
explaining what is achieved. By improving performance in

prediction, the agent renders the world less surprising, effectively
gaining information (Cover and Thomas, 2006; Friston et al., 2012).
The process can be seen as characteristically infotropic in this way
(Thornton, 2014).

Partly because of its heritage in the Bayesian brain theory
(Doya, 2007), predictive processing has generally been seen as an
inherently Bayesian process. The ‘hierarchical prediction machine’
that mediates it is seen to be a specifically Bayesian mechanism.
Processing is considered to be accomplished by inferential calcula-
tions. Backwards inference (i.e., application of Bayes’ rule) is seen
to be the means by which probabilities travel ‘up’ hierarchical
structures, and forwards inference is the means by which they tra-
vel ‘down.’ Out of this bi-directional process, all functionalities of
the brain are assumed to grow,3 with the predictions of the machine
being encapsulated in the conditional probabilities that connect one
level of the hierarchy to another.

What the present paper draws attention to is an alternative way
of specifying a machine of this type. In addition to the Bayesian
formulation, there is an information-theoretic model, which is
simpler in some respects. Key to this alternative is themetric of pre-
dictive payoff. Using basic principles of information theory, it is pos-
sible to measure the informational value of a prediction, provided
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1 The claim is part of a tradition emphasizing the role of prediction in perception

and cognition, however (e.g. James, 1890/1950; Lashley, 1951; Mackay, 1956;
Tolman, 1948; Yu & Dayan, 2005).

2 The assumption underlying this is that ‘the best ways of interpreting incoming
information via perception, are deeply the same as the best ways of controlling
outgoing information via motor action’ (Eliasmith, 2007, p. 7).

3 The ‘pulling down’ of priors is considered particularly significant (Hohwy, 2013, p.
33). As Clark comments, ‘The beauty of the bidirectional hierarchical structure is that
it allows the system to infer its own priors (the prior beliefs essential to the guessing
routines) as it goes along. It does this by using its best current model—at one level—as
the source of the priors for the level below’ (Clark, 2013a, p. 3).
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we know the value of the outcome predicted and whether or nor it
occurs. We can measure the informational ‘payoff’ with respect to
an event of known value. This metric then gives rise to a way of
building prediction machines. Any network of inter-predicting out-
comes in which evaluations are kept up-to-date propagates infor-
mation between outcomes in a machine-like way. The general
effect is that the machine transitions towards informational value.
The network behaves infotropically, in a way that replicates the
inferential activities of a Bayesian hierarchical prediction machine.
The idea of predictive processing can thus be framed in a purely
information-theoretic way, without using Bayesian theory.

The remainder of the paper sets out this alternative formulation
in detail. Section 2 introduces the metric of predictive payoff, and
examines its relationship to other measures from the Shannon
framework. Section 3 shows how the metric provides the basis
for building an information-theoretic version of the hierarchical
prediction machine. Section 4 then demonstrates the behavior of
some sample machines, including one deployed as the control sys-
tem for a Braitenberg robot. Section 6 discusses neurophysiological
issues, and Section 7 offers some concluding remarks.

2. Measuring predictive payoff

The theoretical foundation for the present proposal is Shannon
information theory (Shannon & Weaver, 1949; Shannon, 1948). At
the heart of this framework is the observation that certain events
are well-behaved from the informational point of view. Given a
strict choice of outcomes (i.e., a set of events out of which precisely
one occurs), the informational value of the outcome that does
occur can be defined as

� logpðxÞ
where x is the outcome in question, and pðxÞ is its probability. As
Shannon notes, measuring the value in this way can be justified
on a number of grounds. For one thing, it ensures that more improb-
able outcomes have higher informational value, as intuition sug-
gests they must. For another, the value then corresponds to the
quantity of data needed to signal the outcome. If we take logs to
base 2 and round the value up to an integer, it is also the number
of binary digits needed to signal what occurs.4 For this reason, the
value is often said to be measured in ‘bits’ (a contraction of BInary
digiTS).5 More formally, the quantity is termed the surprisal of the
outcome (Tribus, 1961). Weather events are a convenient way to
illustrate use of the measure. If everyday it rains with probability
0.25, but is fine otherwise, the informational value of the outcome
of rain is �log20:25 ¼ 2 bits.

Given this way of measuring the informational value of individ-
ual outcomes, it is straightforward to derive an average. Assuming
we know the probability for all outcomes within the choice, the
average information gained from discovering the result is

�
X
x

pðxÞlog2pðxÞ

This formula defines the information gained on average from dis-
covering the outcome. We can also see it as the information that
is expected to be gained from discovering the outcome. More gener-
ally, we can see the quantity as the uncertainty that exists with
respect to the choice. Shannon notes this average plays an impor-
tant role in statistical mechanics, where it is termed entropy.
Accordingly, Shannon uses the term entropy as a description. Aver-
age information may thus be termed entropy, expected surprisal,

average surprisal, expected information or uncertainty (Cover &
Thomas, 2006; Mackay, 2003).6 The weather illustration can be
extended to show how entropy measurement is applied: if everyday
it rains with probability 0.2, snows with probability 0.1, and is fine
otherwise, the average informational value of an outcome is

�ð0:2log20:2þ 0:1log20:1þ 0:7log20:7Þ � 1:15 bits

One difficulty with the framework is the status of the probabilities
taken into account. Whether they are objective (defined by the
world), or subjective (defined by a model possessed by the obser-
ver) is not specified.7 In practice, either interpretation can be
applied, and theorists tend to adopt whichever is appropriate for
their purposes. Where entropy is seen as quantifying uncertainty,
probabilities are likely to be seen as subjective. Where the formula
is seen as quantifying generated information, they are likely to be
seen as objective.8

Problems then arise if there is any difference between the two
distributions. To give a concrete example, imagine that every day
it rains with probability 0.2, but that an observer predicts rain with
probability 0.4. The observer’s prediction gives rain a higher prob-
ability than it really has. Plugging the objective probability into the
formula, we find that the outcome generates a little over 0.7 bits of
information. Using the subjective probability, the figure is nearly 1
bit. Without a distinction being made between subjective and
objective probabilities, the evaluation is ambiguous.

One way of dealing with this situation is simply to disallow it.
The position can be taken that the Shannon framework does not
accommodate any deviation between subjective and objective
probabilities. More productively, we can view the subjective distri-
bution as a predictive model. On this basis, the predictions that
arise can be seen (and evaluated) as ways of acquiring the informa-
tional value of an outcome before it occurs. The calculation is made
as follows. A predictive model must give rise to particular predic-
tions. Given the informational value of a correct prediction must
be the informational value of the correctly predicted outcome,
we can calculate the expected informational value of predictions
with respect to an outcome that does occur. We can find out, in
other words, how much of the outcome’s informational value is
obtained in advance, by application of the predictive model.

Consider the following case. Imagine we are dealing with a
choice of two outcomes, a and b. Let a0 denote a prediction of out-
come a, and b0 a prediction of b. If the two events are objectively
equiprobable, the informational value of each is �log2

1
2 ¼ 1 bit. If

the predictive model gives rise to a0 alone, and a is the outcome,
we then have

Iða0Þ ¼ IðaÞ ¼ 1 bit

The value of the predictive model is 1 bit. Similarly, if the model
gives rise to b0 and b is the outcome, we have

Iðb0Þ ¼ IðbÞ ¼ 1 bit

Again the model is worth 1 bit. If the model gives rise to both
predictions together, its informational value is zero by definition.
Predicting both outcomes is equivalent to making no prediction at
all—the prediction merely recapitulates the choice. Thus

4 For example, if event x has probability 0.25, we expect it to be drawn from a
choice of 1

0:25 ¼ 4 alternatives, for which we will need �log20:25 ¼ 2 binary digits to
signal the outcome.

5 The term is original due to John Tukey.

6 In developing the framework, Shannon was particularly concerned with problems
of telecommunication (Shannon, 1956). Events are conceptualized as messages sent
from a sender to a receiver by means of a communication channel. Theoretical results
of the framework then relate to fundamental limits on channel capacity, and the way
statistical noise can be eliminated by introduction of redundancy.

7 The present paper makes no distinction between a subjective probability and a
Bayesian ‘degree of belief’; whether there is a valid distinction to be made is unclear
(cf. Ramsay, 1990).

8 For example, for purposes of analyzing perceptual organization, von Helmholtz
(1860/1962) takes probabilities to be inherently objective. For purposes of analyzing
musical creativity, Temperley (2007) takes them to be inherently subjective.
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