
Prediction error minimization: Implications for Embodied Cognition and
the Extended Mind Hypothesis

Leon de Bruin a,⇑, John Michael b

aDepartment of Philosophy, Radboud University Nijmegen, Erasmusplein 1, 6500 HD Nijmegen, The Netherlands
bDepartment of Cognitive Science, Central European University Budapest, Frankel Leó út 30-34, Budapest 1023, Hungary

a r t i c l e i n f o

Article history:
Received 1 August 2015
Revised 18 December 2015
Accepted 28 January 2016
Available online 5 February 2016

Keywords:
Prediction error minimization
Embodied Cognition
Extended Mind Hypothesis

a b s t r a c t

Over the past few years, the prediction error minimization (PEM) framework has increasingly been
gaining ground throughout the cognitive sciences. A key issue dividing proponents of PEM is how
we should conceptualize the relation between brain, body and environment. Clark advocates a version
of PEM which retains, at least to a certain extent, his prior commitments to Embodied Cognition and to
the Extended Mind Hypothesis. Hohwy, by contrast, presents a sustained argument that PEM actually
rules out at least some versions of Embodied and Extended cognition. The aim of this paper is to
facilitate a constructive debate between these two competing alternatives by explicating the different
theoretical motivations underlying them, and by homing in on the relevant issues that may help to
adjudicate between them.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Over the past few years, the prediction error minimization
(PEM) framework has increasingly been gaining ground through-
out the cognitive sciences. PEM essentially treats the brain as a
probabilistic inference system, which is hierarchically organized
in levels, and attempts to predict the input it receives by construct-
ing models of the possible causes of this input (Clark, 2013; Friston,
2010; Hohwy, 2014). The main aim of the system is to minimize
the ‘prediction error’, i.e. the discrepancy between the predicted
and the actual input.

A key issue dividing proponents of PEM is how we should
conceptualize the relation between brain, body and environment.
Clark (2013) advocates a version of PEM which is committed to
Embodied Cognition and the Extended Mind Hypothesis. He argues
that some bodily and extended processes may qualify as constitut-
ing cognition and thereby reduce complexity for the brain, making
it possible to interact with and exploit some features of the environ-
ment without representing them. Hohwy (2014), by contrast,
presents a sustained argument that PEM actually rules out at least
some versions of Embodied Cognition and the Extended Mind
Hypothesis. Specifically, he argues that PEM in fact entails a bound-
ary between cognitive systems and their bodies/environments, and

that the concept of a ‘Markov blanket’ provides a principled basis
for specifying that boundary.

The aim of this paper is to investigate how PEM constrains the
relation between brain, body and environment, and what it implies
for Embodied Cognition and the Extended Mind Hypothesis.

The paper has the following structure. In the next section
(Section 2) we discuss the basic concepts and claims of PEM. In
Section 3 we spell out the differences between Clark (2013) and
Hohwy (2014) with respect to what PEM implies for Embodied
Cognition and the Extended Mind Hypothesis. In Section 4 we trace
these differences back to five fundamental issues, and use this as a
basis for identifying means of adjudicating between the two
approaches. In Section 5, we conclude by pointing out some direc-
tions for future research.

2. Prediction error minimization: a Primer

The basic idea behind PEM is that the brain is a kind of
prediction machine: its goal is to anticipate incoming sensory,
proprioceptive and interoceptive input as well as it can.1 In order
to achieve this, it constructs models of the possible causes of those
inputs. These models generate predictions about likely inputs at
any given time, which can then be compared to actual inputs. If
the discrepancy between predicted and actual inputs – i.e. the
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prediction error – is small, then there may be no need to revise the
model that gives rise to the prediction. If, on the other hand, the
prediction error is large, then it is likely that the model fails to
capture the causes of the inputs, and therefore must be revised.
In this sense, the brain is not concerned with coding input per
se but only unexpected input.2

The models of the world that enable the brain to predict
inputs are organized in a hierarchy. At the lowest level of the hier-
archy, neural populations encode such features as surfaces, edges
and colors. At a hierarchically superordinate level, these low-level
features are grouped together into objects, while even further up
the hierarchy these objects are grouped together as components
of larger scenes involving multiple objects. When you see a red
cup, for example, there will be a response on the part of neurons
in your visual system that code for edges, and these neurons will
represent edges at a particular location in the visual field. In addi-
tion, there will be a response on the part of neurons that code for
surfaces, and there will be a response on the part of neurons that
code for redness, which will represent a surface and redness at a
particular area of the visual field. From one millisecond to the
next, there will not be much change in these inputs, and the neu-
ral populations at the hierarchically lowest level (representing
edges, surfaces and colors) may, as a default, predict no change
in inputs. If the cup is moved, however, the inputs will change.
Importantly, they will change in a manner that is coherent, given
that they are all features of the same cup – if one of the edges
moves to the left a certain distance, so will the other edges,
and so will the red surface. In order to draw upon such regulari-
ties in anticipating inputs, the brain, at a hierarchical level that is
superordinate to the representation of such low-level features as
surfaces and edges and colors, represents the cup as an object.
Moreover, to anticipate changes over longer time scales, superor-
dinate models embed this object into larger scenes, such as tea
parties, and thereby generate predictions pertaining to objects
and overall scenes in a context-dependent fashion (rather than
low-level features such as edges, surfaces and colors). Thus, by
embedding the cup into a model of a tea party, it will become
possible to predict roughly in what ways the cup will be moved,
by whom, and where to. On the other hand, since we also lose
detail and precision as we move up the hierarchy, lower hierar-
chical levels are still required in order to make specific
predictions.

Modeling more abstract features of the world helps to reduce
uncertainty because variance in more slowly changing causes
helps to explain unexpected variance in shorter time scale causes
(e.g., when the cup suddenly disappears into the dish washing
machine). Cups retain their shapes for years or even centuries,
as do the social norms governing behavior at tea parties. But
whereas hierarchical models reduce uncertainty, prediction
errors will always occur (even if one expects tea cups, for exam-
ple, to be placed on tables, to be filled with tea, etc., one will
generally not know precisely when and where). How, then, does
the brain deal with the inevitable prediction errors? The basic
mechanism is as follows: when a prediction error exceeds a
given threshold, the model giving rise to the prediction must
be revised, so an error signal is sent up to the immediately
superordinate model, which is accordingly revised. New predic-
tions are thereby generated and sent back down the hierarchy,
where they are tested against new inputs. The process is

repeated continuously, and in this manner the brain minimizes
average long-term prediction error.3

When confronted with a prediction error, the brain basically has
two options for reducing prediction error. The first option is to
revise its model of the world until the prediction error is satisfac-
torily diminished. This is called ‘perceptual inference’. The second
option is to change the world so that it matches the model. This
is called ‘active inference’. If, for example, one expects to see one’s
cup of coffee on the desk in front of one, but it turns out not to be
there, one might simply conclude that one was mistaken (i.e.
change the model). But one might also adjust one’s head or even
one’s bodily position until one does see the coffee cup, e.g. behind
the laptop or occluded by a stack of books. In this case, one has
changed the world in the sense of changing the position of one’s
body in the world. More radically, one might go and get a cup of
coffee and put it exactly on that part of the desk where one had
expected it to be. Again, this would amount to changing the world
to match the model one had of it.

The concept of active inference is attractive because, together
with perceptual inference, it provides a unifying framework for
perception and action: both can be viewed as means of reducing
prediction error. As Friston, Daunizeau, Kilner, and Kiebel (2010,
p. 12) put it: ‘‘Perceptual learning and inference is necessary to
induce prior expectations about how the sensorium unfolds. Action
is engaged to resample the world to fulfill these expectations. This
places perception and action in intimate relation and accounts for
both with the same principle”.

A guiding assumption of PEM is that any system that minimizes
long-term prediction error will approximate Bayesian inference
(Friston, 2009; see also Clark, 2013; Hohwy, 2014). In Bayesian
inference, models are not only evaluated according to how well
they fit the evidence (i.e., how well they predict the input in ques-
tion) but also according to how likely they are in the first place (i.e.,
their ‘prior probability’). Thus, when making sense of new sensory
input, the brain does not start from scratch but, rather, updates the
model with the highest prior probability in order to make it accom-
modate the new evidence.

3. Implications for Embodied Cognition and the Extended Mind
Hypothesis

3.1. PEM and the mind-world linkage

In this section we will take a closer look at the divergent impli-
cations which Clark and Hohwy derive from PEM regarding the
relation between brain, body and environment. A good starting
point is the question how to balance seclusion and openness in
our understanding of the relation between mind and world.

Clark (2013) recognizes that PEM offers a ‘challenging vision’,
since it proposes that our expectations are in an important sense
the primary source of what we perceive. However, he does not take
this to mean that we should embrace the idea that what we
perceive is the brain’s best hypothesis. He claims that ‘‘what we
perceive is not some internal representation or hypothesis but

2 This is nicely illustrated in the area of reward processing by the behavior of
dopaminergic neurons in the striatum: their rate of firing corresponds to unexpected
changes in the value of a coming reward (e.g. increases or decreases in the number of
drops of juice that are administered after a tone has sounded), not to the actual value
of the reward itself (Bayer & Glimcher, 2005; Nakahara, Itoh, Kawagoe, Takikawa, &
Hikosaka, 2004; Tobler, Fiorillo, & Schultz, 2005).

3 This raises the question just how large a discrepancy between predicted and
actual input can be tolerated. To deal with this issue in detail would take us too far
afield, but the rough idea is that the error threshold is modulated according to the
degree of expected precision. If there is a large prediction error but the signal is noisy,
then there is an increased likelihood that the error is due to noise in the signal. Thus,
it would be hasty to revise the model that gives rise to the prediction without further
sampling. In other words, the brain engages in second-order statistics. This lends
context-sensitivity to the system, in the hierarchical manner explained above. At
twilight, for example, when conditions are not very good for vision, it is sensible to
assign greater weight to one’s expectations about what one is likely to encounter than
on a sunny afternoon, so the threshold for prediction errors should accordingly be
raised (see Hohwy, 2012 for a thorough treatment of these issues).
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