
Disentangling signal and noise in autism spectrum disorder

Sander Van de Cruys a,b,⇑, Ruth Van der Hallen a,b,c, Johan Wagemans a,b

a Laboratory of Experimental Psychology, Brain & Cognition, KU Leuven, 3000 Leuven, Belgium
b Leuven Autism Research (LAuRes), KU Leuven, 3000 Leuven, Belgium
cChild and Adolescent Psychiatry, UPC KU Leuven, 3000 Leuven, Belgium

a r t i c l e i n f o

Article history:
Received 8 September 2015
Revised 11 August 2016
Accepted 11 August 2016
Available online 17 September 2016

Keywords:
Autism spectrum disorder
Motion perception
Coherent motion
Perceptual integration
Bayesian perception
Predictive coding

a b s t r a c t

Predictive coding has recently been welcomed as a fruitful framework to understand autism spectrum
disorder. Starting from an account centered on deficient differential weighting of prediction errors (based
in so-called precision estimation), we illustrate that individuals with autism have particular difficulties
with separating signal from noise, across different tasks. Specifically, we discuss how deficient
precision-setting is detrimental for learning in unstable environments, for context-dependent assign-
ment of salience to inputs, and for robustness in perception, as illustrated in coherent motion paradigms.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

As part of the wider trend in computational psychiatry (Friston,
Stephan, Montague, & Dolan, 2014; Montague, Dolan, Friston, &
Dayan, 2012; Stephan & Mathys, 2014), recent explanatory
accounts of autism spectrum disorder (ASD) take inspiration from
well-articulated information processing models of typical cogni-
tion (Hohwy, 2013; Lawson, Rees, & Friston, 2014; Pellicano &
Burr, 2012; Qian & Lipkin, 2011; Quattrocki & Friston, 2014;
Rosenberg, Patterson, & Angelaki, 2015; Sinha et al., 2014; Van
de Cruys et al., 2014). Particularly influential in most of these
new proposals for ASD is the predictive coding framework (Clark,
2013; Friston, 2010). Predictive coding assumes that the brain
builds a so-called generative model about the environmental
causes of the sensory inputs it receives. It infers these causes by
making a best guess, or prediction, about incoming inputs at each
point in time and evaluating whether the predicted sensory activ-
ity corresponds with that actually received through the senses. If
not, the system will attempt to reduce this mismatch, or prediction
error, by adjusting its prediction about the state of the environ-
ment and adapting its generative model for the current context
accordingly. Within this scheme, these models are hierarchically
structured (Rohe & Noppeney, 2015; Wacongne et al., 2011), where

higher levels are capable of capturing patterns in sensory inputs
that have larger spatial or temporal spans.

However, not all prediction errors are created equal. In order to
appropriately weigh a prediction error, not only the mean (best
estimate) is predicted at each level, also the precision (inverse vari-
ance) of the prediction error is estimated. The comparison with a
statistical t-test makes clear why this is important: in a t-test a dif-
ference in means (‘‘prediction error”) is weighted by the variance
or expected (standard) error (Friston, 2010). Otherwise, there is
no way to interpret the importance (informative value) of the dif-
ferences one finds. Technically, precisions are hyper-parameters
which are estimated and learned with the same predictive coding
machinery. Multiple types of uncertainties in the inputs we
receive, make the task of predicting the world particularly chal-
lenging. There may be uncertainty because of our lack of knowl-
edge about a particular regularity in the environment, either
because we have not fully learned the regularity, or because the
regularity has recently changed, which happens frequently in a
volatile environment. Uncertainty can also be due to the proba-
bilistic nature of a given regularity: By chance, an expected input
pattern may not occur. All these types of uncertainties will result
in prediction errors in the system. Unfortunately, we do not know
a priori whether a given prediction error is actually relevant, i.e.,
corresponds to an actual learnable (change in) regularity in the
environment, or not relevant, i.e., is due to probabilistic noise vari-
ability. In the first case the prediction error should be used to
change inferences and learn new structure, but in the second case
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we should largely ignore it, using it only to improve future preci-
sion estimates. Optimally, precision or gain should be high (Yu &
Dayan, 2005) when prediction errors correspond to reducible,
learnable uncertainty or when confidence in the prediction is low.

In many of the recent proposals for ASD, deficient precision esti-
mation is assumed to be key (Lawson et al., 2014; Palmer, Paton,
Kirkovski, Enticott, & Hohwy, 2015; Pellicano & Burr, 2012; Van
de Cruys, de-Wit, Evers, Boets, & Wagemans, 2013; Van de Cruys
et al., 2014). Our own account, termed ‘‘HIPPEA” (for High, Inflex-
ible Precision of Prediction Errors in Autism), assumes that bottom-
up prediction errors are assigned a precision that is too high and
not adapted (inflexible) to the uncertainty in the context (Van de
Cruys et al., 2014). A crucial consequence of this is that prediction
errors are taken at face value, hence there will be too little dis-
counting of (prediction errors stemming from) noise or irrelevant
variability in inputs. Non-repeating, accidental variations in the
input will receive disproportionately high weight, resulting in
overfitting to these irrelevant differences: models will be shaped
by putative regularities that will not generalize. By setting preci-
sion invariably high, ‘‘training examples” will be more literally
encoded (cf. veridical mapping, Mottron et al., 2013). According
to HIPPEA, inefficient predictive updating will result in different
top-down priors or predictions, namely overfitted, low-level ones
that capture too much redundant inputs, and possibly an impover-
ished set of very high level ones that are not sufficiently informa-
tive. Such an incomplete hierarchical generative model would
result from the fact that unduly high precision of inputs induces
predictive matching that takes place on (and might not get
beyond) very local (lower) levels. While this happens at the
expense of detecting more abstract regularities, note that the basic
capacity of forming predictions remains unaffected. Rather, encod-
ing of noise hampers discovery of regularities when these are
embedded in more complex, noisy inputs.

It follows that we should be careful in stating that individuals
with ASD cannot form informative priors (only ‘‘weak” or low pre-
cision priors), as several authors seem to suggest (Manning, Tibber,
Charman, Dakin, & Pellicano, 2015; Pellicano & Burr, 2012; Sinha
et al., 2014; Zaidel, Goin-Kochel, & Angelaki, 2015). Surely, in lots
of cases individuals with ASD can detect and learn to use regular-
ities (in the form of informative priors). A recent study by Spanò,
Peterson, Nadel, Rhoads, and Edgin (2015) convincingly showed
that children with ASD use both low-level priors (on convexity
and surface integration) and higher level priors (based on form/
object memories) in a basic visual figure-ground segregation task,
to the same extent as typically developing children. As pointed out
before, even probabilistic and implicit regularities can be learned
in ASD (e.g., Nemeth et al., 2010; Roser, Aslin, McKenzie, Zahra, &
Fiser, 2015; Solomon, Smith, Frank, Ly, & Carter, 2011). If the task
makes clear which stimuli or dimensions are relevant, people with
ASD may even be more sensitive to changes in environmental pat-
terns (Westerfield, Zinni, Vo, & Townsend, 2015) as seen in the P3
ERP component, consistent with our proposal of increased preci-
sion of prediction errors.

Still, there is important commonality between the HIPPEA
account and the weak priors account (Pellicano & Burr, 2012),
because both are talking about relative precisions of bottom-up
and top-down information on each level of the hierarchy (see also
Lawson et al., 2014). The weight of new evidence (and thus the
change in prediction) is defined as the precision of input divided
by the precision of the prior (see Mathys et al., 2014 for the full
computational details). Hence, weaker (i.e., lower precision or less
confidence in) top-down predictions would also lead to increased
reliance on bottom-up information as in the ‘‘weak priors” account
(Pellicano & Burr, 2012). The importance of relative precisions,
however, also implies that studies that find reduced adaptation
in behavior or reduced repetition suppression in fMRI responses

in ASD (or high autism traits) (e.g., Ewbank et al., 2014;
Molesworth, Chevallier, Happé, & Hampton, 2015; Turi et al.,
2015) cannot simply be considered evidence for the weaker priors
thesis, even though both adaptation and repetition suppression are
thought to be the result of (top-down) predictive activity (Chopin
& Mamassian, 2012; Summerfield, Trittschuh, Monti, Mesulam, &
Egner, 2008).

Both ways of shifting the balance in inference (higher bottom-
up precision vs. lower top-down precision) should be dissociable,
at least in principle, when considering the result of inference.
Specifically, one would expect higher precision of the posterior
estimate for ASD in case of higher precision prediction errors. At
first sight, this seems to be a testable prediction, for example by
directly or indirectly probing for decision confidence (Meyniel,
Schlunegger, & Dehaene, 2015; Yeung & Summerfield, 2012). Addi-
tionally, one should expect less trial-by-trial fluctuations in confi-
dence according to the current proposal. However, simple
confidence measures may not be able to satisfactorily answer these
questions, given that (1) they provide one measure for something
(posterior) that takes place on multiple hierarchical levels, (2) they
might be affected by (executive) post-perceptual processes, and (3)
they require the capacity to explicitly reflect on one’s own thought
processes (explicit metacognition), which may be particularly defi-
cient in ASD (Grainger, Williams, & Lind, 2014).

To make progress on these Bayesian accounts of ASD, it will be
important to study the updating (learning) and application of pri-
ors on a trial-by-trial basis, precisely quantifying varying uncer-
tainties and to what extent they are taken into account for future
inference. In the next section, we will discuss studies in ASD that
are beginning this enterprise, in the context of learning in unstable
or volatile environments. We will see that forming higher order
expectations on volatility are necessary to restrain the effect of
noise.

In a second section, we will look at studies on salience in per-
ception in ASD. Even if priors are learned, they may fail to ade-
quately smooth out the variability that is inherent to all natural
stimuli, because of the weight that deviations receive. This
increased sensitivity to variability, irrespective of its origin or rel-
evance, means that the informative value or salience of different
pieces of input is not properly determined. Again, this can be seen
as an inability to disentangle relevant (signal) and irrelevant
(noise) inputs, dependent on a given context.

In a final section, we will discuss the sensitivity to variability in
the input and how that leads to the lack of robustness in inference.
We will discuss studies that suggest that coherent motion percep-
tion and motor behavior is more vulnerable to noise in ASD. Here
too, second-order estimations of to be expected variability, learned
across different experiences, would typically help rein in noise, but
because of the precision-based mechanism described above this
seems to be hampered in ASD.

2. Learning in unstable environments

A mix of uncertainties (actual and accidental changes) is partic-
ularly present in a probabilistic learning task, where the governing
rule (e.g., stimulus A is rewarded) has to be learned based on
imperfect (probabilistic) feedback on your choices, and the govern-
ing rule can change unexpectedly (e.g., not A but B is rewarded
from now on). If one accurately estimates the intrinsic level of
uncertainty across multiple trials (i.e., the expected amount of pre-
diction errors one will encounter), it is easy to weight feedback
that exceeds this expected uncertainty, such that subsequent pre-
dictions about which rule holds, will be updated. Probabilistic
reversal learning studies in ASD participants show that while they
seem perfectly able to learn a probabilistic rule initially,
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