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a b s t r a c t

Many theoretical and empirical contributions to the Predictive Processing account emphasize the impor-
tant role of precision modulation of prediction errors. Recently it has been proposed that the causal mod-
els used in human predictive processing are best formally modeled by categorical probability
distributions. Crucially, such distributions assume a well-defined, discrete state space. In this paper we
explore the consequences of this formalization. In particular we argue that the level of detail of genera-
tive models and predictions modulates prediction error. We show that both increasing the level of detail
of the generative models and decreasing the level of detail of the predictions can be suitable mechanisms
for lowering prediction errors. Both increase precision, yet come at the price of lowering the amount of
information that can be gained by correct predictions. Our theoretical result establishes a key open
empirical question to address: How does the brain optimize the trade-off between high precision and
information gain when making its predictions?

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

The predictive processing account has received widespread
attention. Building on pioneering hierarchical predictive coding
models of perception (Friston, 2005; Lee & Mumford, 2003; Rao
& Ballard, 1999), recent literature proposes that the whole of per-
ception, cognition, and action (Clark, 2013a) or even the entire
operation of the brain (Hohwy, 2013) can be summarized by a sim-
ple, unifying principle. Rather than processing inputs in a mere
bottom-up fashion, the brain is assumed to predict its inputs in a
hierarchical manner by generative (causal) models and to process
only that part of the input that is yet unexplained – the so-called
prediction error. Sometimes prediction errors stem from the inher-
ent stochastic nature of the world. To illustrate, take for instance,
the observation of the outcome of a coin toss. We will have high
confidence in our prediction that the coin will either land on heads
or that it will land on tails, each event having a probability of 0.5;
the observation of the actual outcome – while generating one bit of
information – will normally not surprise us, as both events are fully

consistent with our experience and knowledge of tossing a (fair)
coin. One’s generative models will therefore presumably not be
changed as a consequence of this prediction error.

However, sometimes prediction errors are the result of an
incomplete, immature, or just plain wrong generative model; think
of trying an unknown dish in a restaurant or standing on skates for
the first time. The uncertainty here is due to a lack of knowledge,
and the prediction error will have impact: It allows the brain to
update and improve its generative models (Payzan-LeNestour &
Bossaerts, 2011; Yu & Dayan, 2005). These different roles of predic-
tion errors, depending on the source of the uncertainty (irreducible,
i.e., due to the inherent (known) stochastic nature of the world; or
reducible, i.e., due to our lack of knowledge) are captured by the
precision of the prediction error: A context-specific weighting of
the prediction error that drives less or more attention to prediction
errors. The net effect of the observation is thus a function of the
precision of the prediction (capturing the uncertainty of the out-
come) and the precision of the prediction error (capturing the
model confidence).

Traditionally, computational operationalizations of the predic-
tive processing account formulate the generative models (i.e., the
stochastic relation between hypothesized causes and the predicted
effects thereof) as Gaussian densities. Recently, however, Friston
et al. (2015) propose to use categorical (discrete) probability distri-
butions to describe the stochastic generative models that give rise
to the predictions. An important distinction between Gaussian
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densities and categorical probability distributions is that in the lat-
ter the state space granularity (how detailed are the generative
models and the predictions that follow from them) is crucial.
Whereas the amount of uncertainty (or precision) in a Gaussian
density can be adequately described by its variance, the precision
in a categorical distribution must be described by its entropy
(Shannon, 1948), which is a function of both the state space gran-
ularity and the nonuniformity of the distribution (Kwisthout & Van
Rooij, 2015).

Note that this state space granularity is context-dependent.
Crucial in the coin-tossing example is that we describe the out-
come of ‘tossing a coin’ in terms of the side of the coin to land
on top, disregarding all other information in the outcome (such
as the amount of rotation of the coin in the plane) as irrelevant.
Compare this with throwing a regular die. As all sides of the die
are equally likely to land on top, one can expect an odd number
to fall just as often as an even number. When the outcome of a
die is predicted in terms of whether the number will be odd or
even (and the result interpreted likewise), the precision of that
prediction is equal to the precision of tossing a coin. However, if
the outcome of a die is predicted in terms of the number of pips,
and the result interpreted likewise, the prediction is more uncer-
tain – simply, because there are more possible events (‘1’, . . ., ‘6’;
rather than ‘odd’ or ‘even’) and each event is equally likely – there-
fore, the prediction will have lower precision because a prediction
was made (and the outcome interpreted) at a higher level of detail
(Fig. 1). The precision of a prediction, hence, is indeed a function of
both state space and nonuniformity.

Disentangling precision into level of detail and nonuniformity
becomes necessary when cognitive (neuro) scientists aim to
describe predictions and observable outcomes in terms of discrete,
categorical events (Kwisthout & Van Rooij, 2015). Such outcomes
may be the result of a coin flip (heads, tails) or of a die throw
(odd, even; or 1. . .6, depending on how detailed our prediction
is); they may describe the next action of a car in front of us (turn
left, turn right, park, brake, or just keep driving), or of our spouse’s
emotions (sad, frustrated, happy, angry, bored; or whatever dis-
tinctions one makes); it may be a description of what one expects
to see in a forest (‘trees and other life forms’; or, when looking
more closely, a chestnut tree, a squirrel, moss, bugs, etcetera).
The appropriate level of detail that describes such outcomes is typ-
ically highly context-specific and depends on the epistemic and
practical goals of the observing agent.

In this paper, we explore the computational and theoretical
consequences of formalizing predictive processing in categorical
probability distributions. After describing the predictive processing
account more specifically, we introduce level of detail as a concept
that intuitively captures the state space granularity, and together
with the nonuniformity of the distribution describes its precision
or entropy. We define the key computational processes in predic-
tive processing in terms of (hierarchical, dynamical, multi-
dimensional) causal Bayesian networks (Pearl, 2000). We show
that manipulating the level of detail of generative models and/or
predictions allows for the modulation of precision: For example,
we can increase the precision of a prediction by decreasing the
level of detail of the prediction. This, however, comes at the loss
of information that can be gained by correct predictions. How this
trade-off between predictions with high precision and predictions
with high information gain is resolved in the brain is a key open
theoretical (and empirical) question to address.

2. Predictive processing

The Predictive Processing (hereafter PP) account is becoming
more and more popular as a unifying theory of what drives our

cortical processes.1 It encompasses key concepts such as the Bayesian
brain (the brain encodes probability measures and balances prior
expectations to sensory evidence according to the laws of probability
theory, in particular Bayes’ theorem; Knill & Pouget, 2004), the brain
as prediction machine (the brain continuously makes predictions
about future sensory evidence based on its current best model of the
causes of such evidence; Dayan, Hinton, & Neal, 1995; Hohwy,
2007), the free energy principle (the brainminimizes overall expected
prediction error as a proxy tominimize free energy; Friston, 2010) and
the hierarchical organization of the brain (Friston, 2005, 2008). In par-
ticular it is claimed that the PP account applies to the entire cortex
(Clark, 2013a) and that the same generic apparatus and mechanisms
are used for both lower and higher cognition, e.g., both low-level
vision and high-level intention attribution (Clark, 2013b; Kilner,
Friston, & Frith, 2007; Koster-Hale & Saxe, 2013). However, to account
for ‘‘higher cognitive phenomena such as thought, imagery, language,
social cognition, and decision-making” there is still ‘‘plenty of work to
do” (Hohwy, 2013, p. 3). In particular it is as yet unknown ‘‘What [. . .]
the local approximations to Bayesian reasoning look like as we depart
further and further from the safe shores of basic perception andmotor
control? What new forms of representation are then required, and
how do they behave in the context of the hierarchical predictive cod-
ing regime?” (Clark, 2013a, p. 201).

PP can be understood as a cascading hierarchy of increasingly
abstract (e.g., in time scale or space) hypotheses about the world,
where the predictions on one level of the hierarchy are identified
with the hypotheses at the subordinate level. The inference pro-
cess, i.e., inferring assumed causes from stimuli, is presumed to
be facilitated by having predictions (stemming from the genera-
tive, top-down process) at each level of the hierarchy, comparing
these predictions with the observed (or inferred) observations,
and using the prediction error to update both the current hypoth-
esis and to learn for future predictions.

For example, in the action understanding domain, the hierarchy
can include the actual visual, auditory, tactile, or olfactory inputs, like
a series of visual inputs, at the lowest level; one level above we may
situate the kinematics, like a grasping movement of the hand, fol-
lowed by the more abstract object-oriented actions (picking up a
cup). Eventually, the hierarchymay include complex social cognitive
constructs such as future intentions, social conventions, world
knowledge, context etcetera (Kilner et al., 2007). However, the PP
account is currently computationally fleshed out predominantly at
the basic perception and motor control level (Clark, 2013a; see also
Hohwy, 2013). In particular, computational implementations of PP
(typically grouped under the denominator hierarchical predictive cod-
ing or HPC), such as those suggested by Rao and Ballard (1999), Lee
and Mumford (2003), and Friston (2005, 2010), reside at that level.

In a probabilistic interpretation, making a prediction based on
the current hypothesis in any of the assumed levels corresponds
to computing a posterior probability distribution P(Pred|Hyp) over
a space of candidate predictions, given the current estimated dis-
tribution over a space of hypotheses.2 Computing (the magnitude
of) a prediction error corresponds to computing the relative entropy

1 An illustration of this might be the observation that a separate outlet (Cleeremans
& Edelman, 2013) was created to allow for the large number of commentaries to
Clark’s (2013a) target article in Behavioral and Brain Sciences. Also indicative is that a
search on ‘‘predictive coding” and ‘‘predictive processing” on Google Scholar together
found about 2500 papers published in 2014.

2 There appears to be some ambiguity in the literature about whether a prediction
(hypothesis) refers to a distribution over candidate predictions (hypotheses), or the
mode of that distribution; see, e.g., Kilner et al. (2007, p. 161), Hohwy, Roepstorff, and
Friston (2008, p. 691), and Hohwy (2013, p. 61) for examples that suggest the latter. In
this paper we adhere to the view (e.g., Knill & Pouget, 2004; Lee & Mumford, 2003;
Friston, 2009) that suggests that whole distributions (or approximations thereof) are
maintained, without claiming that this debate has fully settled yet. In the remainder,
unless explicitly noted, hypothesis refers to a probability distribution over a space of
candidate hypotheses, and similar for predictions.
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