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Wormholes in virtual space: From cognitive maps to cognitive graphs
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a b s t r a c t

Humans and other animals build up spatial knowledge of the environment on the basis of visual infor-
mation and path integration. We compare three hypotheses about the geometry of this knowledge of
navigation space: (a) ‘cognitive map’ with metric Euclidean structure and a consistent coordinate system,
(b) ‘topological graph’ or network of paths between places, and (c) ‘labelled graph’ incorporating local
metric information about path lengths and junction angles. In two experiments, participants walked in
a non-Euclidean environment, a virtual hedge maze containing two ‘wormholes’ that visually rotated
and teleported them between locations. During training, they learned the metric locations of eight target
objects from a ‘home’ location, which were visible individually. During testing, shorter wormhole routes
to a target were preferred, and novel shortcuts were directional, contrary to the topological hypothesis.
Shortcuts were strongly biased by the wormholes, with mean constant errors of 37� and 41� (45�
expected), revealing violations of the metric postulates in spatial knowledge. In addition, shortcuts to tar-
gets near wormholes shifted relative to flanking targets, revealing ‘rips’ (86% of cases), ’folds’ (91%), and
ordinal reversals (66%) in spatial knowledge. Moreover, participants were completely unaware of these
geometric inconsistencies, reflecting a surprising insensitivity to Euclidean structure. The probability of
the shortcut data under the Euclidean map model and labelled graph model indicated decisive support
for the latter (BFGM > 100). We conclude that knowledge of navigation space is best characterized by a
labelled graph, in which local metric information is approximate, geometrically inconsistent, and not
embedded in a common coordinate system. This class of ‘cognitive graph’ models supports route finding,
novel detours, and rough shortcuts, and has the potential to unify a range of data on spatial navigation.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

As humans and other animals explore their environments, they
build up spatial knowledge based on visual, idiothetic, and other
sensory information. The underlying geometry of the resulting
knowledge might take a number of forms (Tobler, 1976; Trullier,
Wiener, Berthoz, & Meyer, 1997; Tversky, 1993). At one end of
the spectrum (Fig. 1) lies a Euclidean cognitive map, which pre-
serves metric information about the locations of known places in
a common coordinate system (Gallistel, 1990; O’Keefe & Nadel,
1978; Tolman, 1948). At the other end lies weak topological struc-
ture, such as a graph that only preserves a network of paths con-
necting known places (Byrne, 1979; Kuipers, Tecuci, &
Stankiewicz, 2003; Werner, Krieg-Brückner, & Herrmann, 2000).
Various combinations of metric and topological knowledge have

also been proposed, capitalizing on the advantages of each
(Chown, Kaplan, & Kortenkamp, 1995; Kuipers, 2000; Mallot &
Basten, 2009; Meilinger, 2008; Poucet, 1993). After decades of
research on this issue, researchers still hold opposing views and
the question remains unresolved. In this article we report two
experiments on navigation in a non-Euclidean environment that
challenge both extremes. We argue that the evidence is best
accounted for by a labelled graph that incorporates local metric
information but has no globally consistent coordinate system.

1.1. Euclidean maps

Euclidean knowledge (Fig. 1A) would be advantageous because
it supports flexible navigation, including novel as-the-crow-flies
shortcuts and the integration of separately learned routes. An
influential theory holds that a metric Euclidean map is constructed
on the basis of path integration (Gallistel & Cramer, 1996;
McNaughton, Battaglia, Jensen, Moser, & Moser, 2005; O’Keefe &
Nadel, 1978). Specifically, as an animal explores the environment,
the path integrator registers idiothetic (i.e. proprioceptive, motor,
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vestibular) information about the angles turned and distances
travelled from a home location, and assigns salient places to coor-
dinates in this inertial coordinate system. Grid, place, and head-
direction cells in the hippocampal formation have been interpreted
as a system for encoding metric maps from path integration
(Derdikman & Moser, 2010; McNaughton et al., 2005). Indeed,
mammals and insects have been observed to take shortcuts
between known locations (Chapuis, Durup, & Thinus-Blanc, 1987;
Cheeseman et al., 2014; Gould, 1986; Menzel et al., 2006), and
humans are able to estimate the directions and distances between
familiar places (Chrastil & Warren, 2013; Holmes & Sholl, 2005;
Ishikawa & Montello, 2006; Schinazi, Nardi, Newcombe, Shipley,
& Epstein, 2013; Waller & Greenauer, 2007; Weisberg, Schinazi,
Newcombe, Shipley, & Epstein, 2014), consistent with a Euclidean
cognitive map.

On closer examination, however, the evidence appears incon-
clusive. Apparently novel shortcuts may be more simply explained
by knowledge of familiar routes, landmarks, or views (Benhamou,
1996; Bennett, 1996; Cheung et al., 2014; Dyer, 1991; Foo,
Warren, Duchon, & Tarr, 2005). Directional estimates in humans
are highly unreliable, with absolute angular errors of 20–100�
and angular standard deviations on the order of 30� (Chrastil &
Warren, 2013; Foo et al., 2005; Ishikawa & Montello, 2006;
Meilinger, Riecke, & Bülthoff, 2014; Schinazi et al., 2013; Waller
& Greenauer, 2007; Weisberg et al., 2014), while junctions tend
to be orthogonalized to 90� (Byrne, 1979). Distance estimates are
biased by the number of intervening junctions, turns, and bound-
aries, and are asymmetric between more and less salient places
(Burroughs & Sadalla, 1979; Byrne, 1979; Cadwallader, 1979;
Kosslyn, Pick, & Fariello, 1974; McNamara & Diwadkar, 1997;
Sadalla & Magel, 1980; Sadalla & Staplin, 1980; Tversky, 1992).
People often fail to integrate learned routes, and cross-route esti-
mates are generally poor (Golledge, Ruggles, Pellegrino, & Gale,
1993; Ishikawa & Montello, 2006; Moeser, 1988; Schinazi et al.,
2013; Weisberg et al., 2014).

The sine qua non of a Euclidean map is a distance metric that
satisfies the metric postulates. A metric space is defined by a dis-
tance metric that must satisfy the postulates of positivity (AA = 0,
AB > 0), symmetry (AB = BA), segmental additivity (AB + BC = AC),
and the triangle inequality (AB + BC � AC), where pairs of letters
denote distances between pairs of points (Beals, Krantz, &
Tversky, 1968). Yet the human distance and direction estimates
reviewed above imply violations of the postulates of symmetry,
additivity, and the triangle inequality.

Given its supposed ubiquity, there is thus a surprising lack of
convincing evidence for a metric Euclidean map. However, it is dif-
ficult to reject the hypothesis because the expected level of
performance is not well-specified. The view thus remains influen-
tial and has many prominent advocates (Byrne, Becker, & Burgess,
2007; Cheeseman et al., 2014; McNaughton et al., 2005; Nadel,
2013).

1.2. Topological graphs

At the other extreme lies a topological graph (Fig. 1B), a net-
work of connections in which nodes correspond to familiar places
and edges to known paths between them.1 Graph knowledge would
be advantageous because available routes and detours are explicitly
specified in one compact structure, and do not need to be derived
from a coordinate map via additional operations. Nodes may have
associated place information such as views, landmarks, or surface
layout (local geometry), enabling self-localization and orientation
(Epstein & Vass, 2014). It has been suggested that place cell activity
might reflect a hippocampal graph (Dabaghian, Mémoli, Frank, &
Carlsson, 2012; Muller, Stead, & Pach, 1996). Place fields are
anchored to environmental features and their metric locations shift
with transformations of the layout (Dabaghian, Brandt, & Frank,
2014; Muller & Kubie, 1987; O’Keefe & Burgess, 1996).

Graph knowledge is richer than route knowledge, but weaker
than ‘survey’ or map knowledge. Whereas routes are typically
characterized as chains of place-action associations (Trullier
et al., 1997), a graph can express multiple routes between two
places and multiple paths intersecting at one place. Thus, graph
knowledge provides the basis for finding novel routes and detours
(Chrastil & Warren, 2014). On the other hand, a purely topological
graph is insufficient to explain behavior such as taking shorter
routes or novel shortcuts, implying that topological knowledge
may be augmented by metric information.

These considerations have led to hybrid theories in which topo-
logical and map knowledge are represented in parallel or hierarchi-
cal systems (Byrne et al., 2007; Chown et al., 1995; Kuipers, 2000;
Thrun, 1998; Trullier et al., 1997). However, such models are less
parsimonious and are compromised by the lack of evidence for
metric maps.

1.3. Labelled graphs

We suggest that spatial knowledge is more appropriately char-
acterized by a labelled graph, a single structure that incorporates
local metric information (Fig. 1C). Specifically, path lengths are
denoted by edge weights and the angles between paths at junc-
tions are denoted by node labels. This local metric information is
typically noisy, biased, and geometrically inconsistent. Yet such a
cognitive graph is sufficient to find generally shorter routes and
detours, and to generate approximate shortcuts, although their
accuracy would depend on the level of error in the graph.

What distinguishes a labelled graph from a metric map is that
the local information is not embedded into a common coordinate
system, a ’global metric embedding’ in which places are assigned
coordinates in a globally consistent map. Apparently Euclidean
behavior does not necessarily imply a metric map, for it could be
underwritten by a labelled graph together with adaptive naviga-
tion strategies. For example, approximate shortcuts could be gen-
erated by vector addition along a path through the graph,2 which
may be sufficient to bring the navigator within sight of local beacons,
yielding successful shortcuts between familiar places (Foo et al.,
2005).

A labelled graph is reminiscent of previous theories that com-
bine metric and topological information in a single graph structure
(Mallot & Basten, 2009; Meilinger, 2008; Poucet, 1993). These
models are based on the concept of local reference frames (or coor-
dinate systems) that are linked by vectors specifying the metric
distance and direction between them, and are designed to solve
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Fig. 1. Models of spatial knowledge. (A) Euclidean map: places are assigned
locations in a common coordinate system. (B) Topological graph: nodes correspond
to places and edges to paths between them. (C) Labelled graph: edge weights
denote approximate path lengths and node labels denote approximate junction
angles.

1 A graph can also describe connections between other entities, such as views
(Hübner & Mallot, 2007) or neighborhoods (Wiener & Mallot, 2003).

2 Formally, vector addition can be performed in a coordinate-free space by iterative
application of the parallelogram law and cosine and sine rules.

W.H. Warren et al. / Cognition 166 (2017) 152–163 153



Download English Version:

https://daneshyari.com/en/article/5041550

Download Persian Version:

https://daneshyari.com/article/5041550

Daneshyari.com

https://daneshyari.com/en/article/5041550
https://daneshyari.com/article/5041550
https://daneshyari.com

