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a  b  s  t  r  a  c  t

This  paper  presents  a  two-step  strategy  to  provide  a quality-predictable  image  reconstruction.  A  Pre-
computed  Back  Projection  based  Penalized-Likelihood  (PPL)  method  is  proposed  in the  strategy  to
generate  consistent  image  quality.  To  solve  PPL  efficiently,  relaxed  Ordered  Subsets  (OS)  is  applied.  A
training  sets  based  evaluation  is performed  to quantify  the  effect  of  the  undetermined  parameters  in OS,
which  lets  the  results  as  consistent  as  possible  with  the  theoretical  one.
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1. Introduction

Limited angle X-ray tomography is increasingly used in a range
of non-invasive anatomical imaging applications. On one hand, few
sampling is inevitable due to the constraints of geometric con-
figuration, limitations on image acquisition time, or the necessity
to reduce patient radiation dose. On the other hand, the benefits
from three-dimensional (3D) reconstruction can be obtained by
the limited angle configuration. These benefits include the feasibil-
ity in detecting anatomical structure with overlaps and localizing
the region of interest. Current clinical applications include: intra-
operative imaging for reference with a pre-operative planning
CT, angiography, chest tomosynthesis, dental tomosynthesis, car-
diac CT, orthopedic imaging, and, most recently, Digital Breast
Tomosynthesis (DBT) [7,26].

Among current reconstruction techniques, both analytical
reconstruction and iterative methods [13] are widely used. One
classical analytical reconstruction technique is Filtered Back Pro-
jection (FBP) [23] based on Fourier Slice Theorem, which can
yield a precise signal reconstruction at a sampling rate satisfying
Nyquist–Shannon Theorem, but it may  induce reconstruction error
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from highly incomplete frequency information [5]. Several revised
versions of FBP such as adding post-processing filters and interpo-
lating frequency information by a Total-Variation (TV) framework
[6] were proposed. One of the iterative methods is Simultaneous
Algebraic Reconstruction Technique (SART) developed based on
the ART-type (Algebraic Reconstruction Technique type) method
in [4,3]. SART actually applies a Ordered Subsets (OS) method to
solve a unweighted least square model, which may  lead to over-
fitting to the noise data and non-convergence to the optimal value.
Signal statistics in X-ray Computed Tomography (CT) follows Pois-
son distribution for mono-energetic CT and compound Poisson for
polyenergetic CT [24,9]. Reconstruction methods such as Maxi-
mum Likelihood (ML), Penalized Weighted Least Squares (PWLS)
and Penalized Likelihood (PL) with Poisson model were strongly
proposed and well studied in [16–18,10,13,9,8]. The main benefit
from these methods is that the missing data in highly incomplete
sampling could be “guessed” at the maximum probability according
to the observation. However, the computational intensity attacks
statistical methods. Some accelerated strategies successfully speed
up the convergence, such as relaxed Ordered Subsets (OS) [15,11],
Transmission Incremental Optimization Transfer (TRIOT) [2] and
recent Alternating Direction Method of Multipliers (ADMM) [20].

In the classical model of X-ray imaging, the Poisson distribu-
tion of incident photon number dominates the physical process.
Although X-ray detectors are not quanta counters, Poisson distri-
bution still confirms the signal statistics of mono-energetic X-ray
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detection [9]. The number of photons generated and ultimately
detected along a projection follows Poisson distribution which can
be described mathematically as

P(Yi = yi) = �
yi
i
e−�i

yi!
, (1)

where Yi is a random variable counting the observed photons on
the detector along ith X-ray; yi is the observation of Yi; �i is the
expectation value of the random variable Yi. In the classical physical
model, �i can be expressed as

�i = die
−〈�,li〉, (2)

where di is the intensity of the incident X-ray beam; � is a lin-
ear attenuation coefficient vector to be estimated. Each voxel is
assigned an attenuation coefficient and the li denotes the vector
of the intersection length between the ih X-ray and each voxel.
The negative log-likelihood function of all observed photons on the
detector can be written as [17]

L(�) =
M∑
i

{die−〈�,li〉 + yi〈�, li〉} + c, (3)

by the assumption that {Yi}i∈[1,M] are i.i.d, where c is a constant
and M is the number of X-ray beams. Through minimizing (3), the
optimal � can be estimated.

In transmission tomography, Compton scattering which makes
X-ray photon deflected from its original path could yield a photon
noise randomly adding on the detector. The reconstructed results
may  over fit the noise data at the convergence. Xu and Chen [25]
proposed a novel reconstruction method aiming to suppress the
Compton scattering. PL method suggesting to insert a penalty func-
tion was also proposed. One can revise (3) by appending a scaled
penalty function to the likelihood function. The negative log PL
function can be written as

˚(�) = L(�) + �R(�), (4)

where the smoothing parameter � controls the strength of the
penalty function. By minimizing (4), the optimal � is estimated.
Generally speaking, to solve the optimization directly is intractable.
But, by using the method in [18] or the separable parabolic sur-
rogate in [10,11], the optimal � in ˚(�) can be approached
monotonically with optimal solutions of surrogate functions hn(�,
�n), each of which is bounded by ˚(�) at �n.

The main obstacle to apply PL method into the application is
the unpredictable effect of the smoothing parameter on resolu-
tion properties. But thanks to the discussion in [14,22], the authors
proposed a modified quadratic penalty function to eliminate the
data-dependent terms in impulse response and noise, such that
the effect of the smoothing parameter on resolution properties can
be evaluated in advance by studying simulated data. Along with the
spirit of the research, we present a simplified version of the modi-
fied penalty, which is Pre-computed Back Projection based PL (PPL).
A two-step procedure is proposed to perform 3D reconstructions
along with the desired resolution properties. To solve the optimiza-
tion, relaxed OS separable parabolic surrogate (OS-SPS) algorithm
is applied and forms our relaxed OS-PPL. But the undetermined
parameters such as relaxation and subsets make the practical res-
olution properties deviated from the theoretical one. To conquer
it, a training set based semi-quantitative evaluation is presented,
by which the parameters in OS are tuned to make the results as
consistent as possible with the theoretical with less computational
cost.

2. Method for characterizing the smoothing parameter �

In (4), the penalty R(�) can take a general form

R(�) =
N∑
j=1

∑
k∈Nj

 (�j − �k), (5)

where Nj is the neighbors of the jth voxel. The function  (t) denotes
the spatial constraint for adjacent voxels. For a quadratic penalty,
  can be formulized as follows

 (�j − �k) = 1
2

(�j − �k)
2, (6)

which results in a consistent smoothing on adjacent voxels.
Through minimizing (4), the optimal estimation of � can be shown
in the following form

u∗ = argmin
�≥0

˚(�). (7)

It is intractable to solve it directly. However, SPS introduced by
[10,11] leads to an iterative solution, which is parallel, monotonic,
but suffers slow convergence. The basic idea of SPS is that by con-
structing a series of separable parabolic functions lower bounded
with the objective function, the optimal value can be approached
by the solution of the surrogate one at each iteration. By applying
SPS on (4) with the quadratic penalty (5), the approximation of (7)
at the (n + 1)th iteration can be written as
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(8)

where |Nj| is the cardinality of the subset Nj. The solution sequence
of the surrogates converges to the optimal value of the objective
function monotonically. Compare to a large curvature of the sur-
rogate function, a small one can yield a faster convergence with
“bounded” condition. By replacing die

−〈�(n),li〉 in the denominator
of (8) as yi, a precomputed curvature in [10] is conceived, which
may  lead to a faster convergence, yet “almost always” monotonic
decreasing.

In practical application, to find a proper smoothing parameter �
in (8) is not trivial. The main reason is that the impulse response and
the noise from PL reconstruction are data-sensitive, which means
small difference in datasets will yield huge difference on resolu-
tion properties, such that the effect of � is unpredictable. To reduce
the data dependence, Fessler et al. proposed a modified penalty
function [14] and demonstrated that the impulse response of the
reconstructed results is only dominated by �. The modified penalty
is written as

Rm(�) =
N∑
j=1

�j
∑
k∈Nj

ωjk�k (�j − �k), (9)

where ω is a weighted coefficient assigned to  . �j is formulized
for emission tomography as follows:

�j = sj
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