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We examinedwhether assortative mating for educational attainment (“likemarries like”) can be detected in the
genomes of ~1600 UK spouse pairs of European descent. Assortative mating on heritable traits like educational
attainment increases the genetic variance and heritability of the trait in the population,whichmay increase social
inequalities. We test for genetic assortative mating in the UK on educational attainment, a phenotype that is in-
dicative of socio-economic status and has shown substantial levels of assortative mating. We use genome-wide
allelic effect sizes from a large genome-wide association study on educational attainment (N ~ 300 k) to create
polygenic scores that are predictive of educational attainment in our independent sample (r = 0.23,
p b 2 × 10−16). The polygenic scores significantly predict partners' educational outcome (r = 0.14, p =
4 × 10−8 and r = 0.19, p = 2 × 10−14

, for prediction from males to females and vice versa, respectively), and
are themselves significantly correlated between spouses (r= 0.11, p= 7 × 10−6). Our findings provide molec-
ular genetic evidence for genetic assortative mating on education in the UK.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Humans generally do not choose their mates randomly. In search for
a suitablemate, among the highest-ranking qualities people look for in a
potential partner are intelligence and educational attainment (Buss and
Barnes, 1986; Zietsch, Verweij, and Burri, 2012). Previous work consis-
tently shows substantial assortative mating for intelligence and educa-
tional attainment, with spousal correlations for intelligence ranging
between 0.33 and 0.72 (Bouchard and McGue, 1981; Gualtieri, 2013;
Mascie-Taylor and Vandenberg, 1988;Watson et al., 2004) and for edu-
cational attainment between 0.45 and 0.66 (Abdellaoui et al., 2015;
Conley et al., 2016; Watson et al., 2004; Zietsch, Verweij, Heath, and
Martin, 2011). Assortative mating can occur via different mechanisms
(which are not always mutually exclusive). Partners can become more
similar to each other over the course of their relationship (i.e., conver-
gence); however, there is no evidence for convergence for cognitive
abilities and educational attainment (Mascie-Taylor and Vandenberg,
1988;Watson et al., 2004; Zietsch et al., 2011). This suggests that assor-
tative mating for educational attainment is due to initial partner choice.
This can happen because of social homogamy,where similar people find

themselves in similar social environments because of their social back-
ground, and/or because of phenotypic matching, where people select
their partner based on similarity in characteristics.

The consequences of assortative mating on education and cognitive
abilities are relevant for society and for the genetic make-up and there-
fore the evolutionary development of subsequent generations
(Thiessen and Gregg, 1980). Assortative mating increases the variance
of characteristics in the population, and may increase social inequality
with respect to education or income (Schwartz, 2013). Greenwood,
Guner, Kocharkov, and Santos (2014) for instance reported a rise in as-
sortative mating for educational attainment in the United States be-
tween 1960 and 2005 and showed that this clustering of academic
success may have caused an increase in income inequality. It is a priori
very plausible that phenotypic similarity between partners on heritable
traits is reflected in their genomic similarities, and thus in the genetic
composition of their offspring. Assortativemating on a heritable trait in-
creases the additive genetic variance for genetic loci associated with
that trait, as well as for other traits that are genetically correlated with
it (Crow and Felsenstein, 1968; Fisher, 1918; Lande, 1977), as assorta-
tive mating generates phenotypes with more extreme genetic values.
The increase in assortment for educational attainment (Greenwood et
al., 2014; Schwartz, 2013) may explain why heritability estimates for
educational attainment have risen over time (Branigan, McCallum,
and Freese, 2013), although there may also be other explanations for
this increase, such as the recently increased equality in educational
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opportunities (Colodro-Conde, Rijsdijk, Tornero-Gómez, Sánchez-
Romera, and Ordoñana, 2015). Another genetic consequence of assorta-
tive mating on education is the influence on genome-wide ancestral
variation and homozygosity. Abdellaoui et al. (2015) showed that
more educated individuals are more likely to migrate, which increases
their chance of meeting a spouse with a different ancestral background.
Accordingly, assortment on educational attainment can result in greater
ancestral variation and lower levels of genome-wide homozygosity (a
genetic signature used to study effects of inbreeding) in the offspring
of higher educated spouse pairs.

Several studies have tried to detect assortative mating on a molecu-
lar genetic level by estimating spousal resemblance on genome-wide
single nucleotide polymorphisms (SNPs) (Domingue, Fletcher, Conley,
and Boardman, 2014; Guo, Wang, Liu, and Randall, 2014; Sebro,
Hoffman, Lange, Rogus, and Risch, 2010). These studies report spouses
to be more similar on genome-wide SNPs than expected under random
mating. However, these reported spousal resemblances are more likely
to be explained by population stratification, i.e., spouse pairs sharing
more ancestry than random male-female pairs (Abdellaoui, Verweij,
and Zietsch, 2014; Sebro et al., 2010), than by phenotypic assortative
mating. Assortative mating on complex phenotypes, such as education,
intelligence, personality, psychiatry, or height, is expected to lead to ge-
netic spousal resemblance. However, these traits are influenced by
many genetic variants throughout the genomewith very small individ-
ual effects that require exceptionally large sample sizes to detect. The
largest patterns of genome-wide variation, which can be captured
with principal component analyses (PCA) in much smaller datasets, re-
flect ancestry differences (Price et al., 2006), correlate strongly with ge-
ography, and show significant spouse correlations (Abdellaoui et al.,
2013b). Geographic proximity is a strong predictor of shared ancestry
and a major determinant of potential spouse pairs meeting, especially
in the presence of social catalysts that narrowmate choice and correlate
with geography, such as religion (Abdellaoui et al., 2013a; Haber et al.,
2013). We therefore expect spousal resemblance on a genome-wide
level to be dominated by shared ancestry, and indeed the above studies
do not show a significant genetic spousal resemblance once ancestry is
appropriately accounted for. A trait-based approach is more powerful,
less susceptible to population stratification, and thus more informative
in detecting genetic assortative mating than estimating allelic spousal
resemblance in a hypothesis-free manner. With the advent of large-
scale genome-wide association studies (GWASs), we can now quantify
significant portions of a person's genetic predisposition for a wide
range of traits with polygenic scores by summing their individual alleles
weighted by their estimated effect sizes. Polygenic scores can have sig-
nificant predictive power and generally improve for complex traits
when adding SNPs that individually did not reach genome-wide signif-
icance (Dudbridge, 2013).

The highly polygenic trait educational attainment is well suited for a
study on genetic assortativemating because the phenotype itself is sub-
ject to high levels of assortment and genome-wide estimates of allelic
effect sizes are available from large GWASs. Conley et al. (2016) show
that polygenic scores based on results from a GWAS on educational at-
tainment of ~126,000 participants (Rietveld et al., 2013) significantly
correlate between spouse pairs born between 1920 and 1950 in the
US. We use genome-wide effect sizes from a GWAS on educational at-
tainment of ~300,000 participants (Okbay et al., 2016) to create poly-
genic scores for couples born between 1919 and 1994 from the UK
Household Longitudinal Study (UKHLS), a survey that aims to be repre-
sentative of the UK population. Given similar levels of phenotypic assor-
tative mating in the US and the UK, we expect to replicate that there is
genetic assortativemating for educational attainment and to findhigher
levels of genetic assortative mating than Conley et al. (2016) given the
more accurate summary statistics and a novel and more powerful poly-
genic score approach (Vilhjálmsson et al., 2015). We test whether indi-
viduals' polygenic risk scores for educational attainment can predict
their partners' educational attainment, and their partners' polygenic

scores. We control for similarities in ancestral background by taking
into account ancestry-informative principal components (PCs).

2. Materials and methods

2.1. Phenotypes

The sample is derived from the UK Household Longitudinal Study:
Understanding Society (UKHLS) (Buck and McFall, 2011), a representa-
tive sample of the UK population. 9944 individuals were genotyped, in-
cluding 1699 pairs whowere living together either as husband andwife
or as a couple. Individuals under 25 years of agewere removed from the
analyses, because they are likely to not have reached their final educa-
tion level; this resulted in an N of 8989. For the cross-spouse analyses
we also removed all pairs where either partner was under 25, resulting
in a sample of 1616 spouse pairs.

We derived a variable for individuals' educational attainment as fol-
lows: 0 = no educational qualifications; 1 = GCSE (national exams
taken at age 16) or “other qualifications”; 2=A-level or equivalent (na-
tional exams taken at age 18, roughly equivalent to French Baccalaure-
ate or US High School Diploma); 3 = University degree or equivalent.
Educational attainment was standardized to have a mean of 0 and a
standard deviation of 1.

The UKHLS is a stratified probability sample of the UK population.
The dataset for the nurse visit sample (fromwhich the SNP data are de-
rived) includes response weights which are meant to account for ascer-
tainment bias and non-response, including non-participation in the
nurse visit andnot donating blood.Weused the cross-sectionalweights,
i.e., the reciprocal of the probability of blood measures to be present for
a particular individual, predicted from a variety of socio-economic char-
acteristics. Further details are given in Benzeval, Davillas, Kumari, and
Lynn (2014). For analyseswhere each case represents a pair of partners,
such as themain regressions on partner characteristics, we used the ar-
ithmetic mean of male and female partner's weight.

2.2. Genotyping, quality control (QC), and principal component analysis
(PCA)

Genotyping was done on the Illumina HumanCoreExome chip for
White/European participants of Waves 2 and 3 of theUnderstanding So-
ciety study. QC was performed on the entire set of 9944 participants in
PLINK (Purcell et al., 2007), and only autosomal SNPs were included.
SNPs were excluded if they: 1) had a missing rate N5%; 2) showed a
minor allele frequency (MAF) smaller than 5%; 3) deviated from
Hardy–Weinberg equilibrium (HWE) with a p-value smaller than
10−8. The QC resulted in 261,965 SNPswith amean individual genotyp-
ing rate of N99.9% (ranging from 97.2% to 99.99%, with only 15 individ-
uals having N1%missingness). There were no individuals detected with
a non-European or non-British ancestry by projecting principal compo-
nents (PCs) from the 1000 Genomes dataset (procedure described in
more detail in the supplementary material of Abdellaoui et al.
(2013b)). To control for ancestry differences within the UK, we con-
ducted a PCA on the genotype data in EIGENSTRAT (Price et al., 2006).
In order to detect the relatively small ancestry differences within the
UK, we pruned for linkage disequilibrium (LD) (window size = 50,
number of SNPs to shift after each step = 5, based on a variance infla-
tion factor [VIF] of 2) and removed long-range LD regions, since LD
can result in larger patterns of variation than ancestry differences with-
in relatively homogeneous populations (Abdellaoui et al., 2013b). After
minimizing LD, 91,708 autosomal SNPs remained. The PCA was con-
ducted on unrelated individuals (9091 out of 9944 participants) and
projected onto the rest. Unrelated individuals were chosen using
GCTA (Yang, Lee, Goddard, and Visscher, 2011), by excluding one of
each pair of individuals with an estimated genetic relationship of
N0.025 (i.e., closer related than third or fourth cousin).
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