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The detection of event-related potentials (ERPs) in the electroencephalogram(EEG) signal is a fundamental com-
ponent in non-invasive brain-computer interface (BCI) research, and in modern cognitive neuroscience studies.
Whereas the grand average response across trials provides an estimation of essential characteristics of a brain-
evoked response, an estimation of the differences between trials for a particular type of stimulus can provide
key insight about the brain dynamics and possible origins of the brain response. The research in ERP single-
trial detection has beenmainly driven by applications in biomedical engineering, with an interest frommachine
learning and signal processing groups that test novel methods on noisy signals. Efficient single-trial detection
techniques require processing steps that include temporal filtering, spatial filtering, and classification. In this
paper, we review the current state-of-the-art methods for single-trial detection of event-related potentials
with applications in BCI. Efficient single-trial detection techniques should embed simple yet efficient functions
requiring as few hyper-parameters as possible. The focus of this paper is on methods that do not include a
large number of hyper-parameters and can be easily implemented with datasets containing a limited number
of trials. A benchmark of different classificationmethods is proposed on a database recorded from sixteen healthy
subjects during a rapid serial visual presentation task. The results support the conclusion that single-trial detec-
tion can be achieved with an area under the ROC curve superior to 0.9 with less than ten sensors and 20 trials
corresponding to the presentation of a target. Whereas the number of sensors is not a key element for efficient
single-trial detection, the number of trials must be carefully chosen for creating a robust classifier.
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1. Introduction

An event-related potential (ERP) is the measured brain response
evoked by specific sensory, cognitive, or motor event. More generally,
it is any stereotyped electrophysiological response to a stimulus. The
ERP technique provides a powerful non-invasive tool for exploring the
human brain, particularly for research related to the temporalmeasure-
ment of cognitive mechanisms (Luck, 2005). An ERP component corre-
sponds to the scalp-recorded neural activity generated from cortical
sources and can be reliably measured using electroencephalography
(EEG), a procedure that measures electrical activity of the brain over
time using electrodes placed on the scalp (Luck, 2004). Since EEGmea-
surements reflect thousands of simultaneous post-synaptic neural acti-
vations, the brain response to a single stimulus or event of interest is not
usually visible in the EEG recording of a single trial (Childers et al.,
1987). Therefore, experimenters typically average many trials together
in order to see the brain's response to a stimulus. This causes random

brain activity to be averaged out, and the relevant waveform to remain,
i.e. the ERP. One of the most widely studied ERP components, first re-
ported over 50 years ago, is the P3 ERP component (also referred to as
the P300), a large positive wave that peaks around 300 ms after the
stimulus onset (Sutton et al., 1965). The P3 is often used to index pro-
cessing related to stimulus categorization and as an input signal in
many brain computer interface (BCI) systems for both patients and
healthy individuals (Donchin et al., 2000; Donnerer and Steed, 2010).
The P3 has been traditionally studied using a two-stimulus oddball
task where an infrequent “oddball” target stimulus is presented
among a series of frequent non-target distractor stimuli where only
the infrequent target stimulus requires a response by the observer
(Polich, 2007). The P3 amplitude is affected by target probability such
that infrequent targets produce larger amplitudes compared with fre-
quent targets, however, P3 amplitude is also affected by stimulus status
since larger P3 amplitudes have been obtained for stimuli defined as tar-
gets when having the same probability of occurrence as non-target
stimuli (Duncan-Jhonson and Donchin, 1977; Johnson, 1988). The
time between target presentations also affects P3 amplitude showing
increased amplitude as target to target interval increases (Croft et al.,
2003). The latency of the P3 is correlated with the reaction time to a
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target stimulus making the latency at which this component peaks a
useful metric for estimating the time it takes to evaluate and categorize
a target stimulus (Dien et al, 2004; Folstein and Van Petten, 2011). Tar-
gets that are easier to categorize produce faster reaction times and ear-
lier P3 peak latencies than more difficult targets. For reviews on the
P3 ERP (see Luck and Kappenman, 2011; Polich, 2007). Other ERPs
components such as the N2 (a negative wave that peaks 150-350 ms
post-stimulus),which usually precedes the P3, have been usedwith sin-
gle-trial detection as a single component, or with the P3. This ERP com-
ponent has been extensively studied to find out its relationship with
selective attention to specify stimulus location in certain area of the vi-
sual field (Kiss et al., 2008). In the subsequent sections of this paper, the
ERP definition includes the brain response relative to any sensory, cog-
nitive, or motor event stimulus. Hence, it includes both visual evoked
potentials (VEPs), and auditory evoked potentials (AEPs) (King et al.,
2013). Finally, to limit the scope of this paper dedicated to ERP single-
trial detection, this paper focuses on multivariate pattern analysis
(MVPA) methods that allow the extraction of meaningful and reliable
information about the presence of a particular ERP at the single-trial
level (e.g. P3; target vs. non-target trial). This differs from methods
that extract relevant information from a population of trials by using
features from each individual trial (e.g. amplitude or latency measure-
ments across trials). In this later case, while the analysis is performed
at the single-trial level, only the group analysis can provide information
about neural processes.

In typical ERP analysis in cognitive neuroscience, the grand average
response across trials is used to analyze and compare differences be-
tween ERP characteristics (amplitude, latency) across subjects. Howev-
er, it is important to be cautious about the interpretation of ERP
waveforms. In most of the ERP experiments, the different ERP wave-
forms are isolated by using the grand average response. Yet, the varia-
tions across trials may not be captured by the grand average response,
whichmay provide a biased view of the single-trial waveforms. This ef-
fect is enhanced when ERP component latencies vary significantly
across trials. Hence, it is ideally better to not assume that an averaged
ERP waveform represents the single-trial waveform prototype. Only a
few studies have taken this information into account (Marathe et al,
2014), by extracting shift-invariant features from the EEG signal
(Cecotti, 2015b).

Modeling trial-to-trial variability in EEG signal has become a major
focus in single-trial classification. Latencies at the single-trial level are
typically by peak-picking and template-matching (Smulders et al.,
1994). Already in Kutas et al. (1977), it was shown at the single-trial
level that the latency of P3 corresponds to stimulus evaluation time
and is independent of response selection. In Delorme et al. (2015),
they have developed a method based on an ERP-image visualization
tool in characteristic such as potential and spectral power are represent-
ed as colour coded horizontal lines that are then stacked to form a 2-D
colored image. Moving-window smoothing across trial epochs can
make otherwise hidden ERP features in the data more perceptible.
Stacking trials in different orders, for example ordered by subject reac-
tion time, by context-related information such as inter-stimulus inter-
val, or some other characteristic of the data (e.g., latency-window
mean power or phase of some EEG source) can reveal aspects of the
multifold complexities of trial-to-trial EEG data variability.

In this paper, we define a complete ERP signal-trial detection pipe-
line that includes temporal filtering, spatial filtering, and classification.
For each component, we review the best methods and the best param-
eters that are currently used. We compare the performance of several
state-of-the art techniques from the BCI literature in order to assess
the performance of these different approaches to highlight themost ef-
ficient pre-processing steps and classification procedure. To compare
the different techniques, we consider a database of 16 healthy subjects
performing a visual target detection task, and where it can be expected
to find amajor N2 and P3 componentwith a high amplitude. Moreover,
this task illustrates how oddball paradigms have evolved to complex

and more applied problems that can be applied in novel BCI systems
for potential threat detection applications in real-world scenarios. The
remainder of this paper is organized as follows: First, we present how
ERP detection is used in BCI in Sections 2 and 3. After the description
of the experimental protocol related to the data used in this paper, in
Section 4, we describe the system architecture in Section 5. The pre-pro-
cessing and classification techniques are detailed in Sections 6 and 7. Fi-
nally, the results are presented in Section 8 and discussed in Section 9.

2. Brain-computer interface

Brain-Computer Interface (BCI) or Brain-Machine Interface (BMI)
systemshave been introduced as a newmeans of communication for se-
verely disabled people who are unable to communicate with conven-
tional devices (e.g. mouse, keyboard, switch), for rehabilitation
purposes (Wolpaw et al., 2002; Millán et al, 2010), and to enhance per-
formance of healthy individuals (Lance et al., 2012). BCIs based on ERP
detection require subjects to pay attention to a specific sequence of
stimuli (typically visual or auditory) in order to produce a robust and
detectable ERP. The stability of the spatial distribution, the amplitude,
and the latency of a brain evoked responses are key features that
allow robust single-trial detection. It is now possible to reliably detect
brain evoked responses using efficient signal processing methods that
denoise the signal and enhance its main discriminant characteristics.
This principle has been used in BCI to detect specific event-related po-
tentials (Wolpaw et al., 2002). Virtual keyboards based on the detection
of ERPs have been used in BCI, themost famous variation is the P3 spell-
er and (Farwell and Donchin, 1988), and new variations based on other
ERP components have been proposed (Hong et al., 2009). A large num-
ber of studies have been dedicated directly to the P3 speller, in order to
understand the impact of its parameters, and how this system can be ef-
ficiently used (Guger et al., 2009).While the P3 ERP is relatively stable in
P300 speller paradigms, accurate and reliable detection of the specific
neural responses often requires averaging multiple responses. For in-
stance, it is common that about ten trials are averaged in BCI virtual key-
boards to optimize the accuracy (Cecotti et al., 2011). The requirement
of several trials is mainly due to the noise in the signal coming from
eye movements, muscular contractions, and ongoing brain activity
that is unrelated to the experimental task. Although averaging the signal
frommultiple brain responses can increase the efficiency of detection, it
also decreases the information transfer rate of the BCI due to the in-
crease of time to acquire additional trials that are needed to reach a ro-
bust decision (Cecotti, 2011). Moreover, there exist tasks where it is not
possible to repeat the visual stimuli: they appear only one time (Cecotti,
2015b). It happens in paradigms where the repetition may have an ef-
fect on the brain evoked response (use of memory), or when the appli-
cation does not allow the repetition of the stimuli, e.g. when a subject
watches a video; each frame of the video is presented only one time.
In situations where novel incoming stimuli are presented in real-time,
it may not be possible to repeat the presentation of visual stimuli in
order to combine the decision scores from their corresponding brain re-
sponses. For this reason, single-trial detection has to be used for target
detection where it is not possible to determine if an image belongs to
a target or a non-target class by considering multiple presentations of
the same image. Yet, if images can be presented several times, it is pos-
sible to combine the decision outputs from the different presentations
like in the P3 speller (Farwell and Donchin, 1988). Thus, the real time
constraint justifies the necessity to find new strategies for increasing
the performance of single-trial detection. Finally, the N2pc (posterior-
contralateral) has been used in some recent BCI studies (Awni et al.,
2013; Matran–Fernandez and Poli, 2016; Sirvent Blasco et al., 2012),
to extract information about the spatial location of attentional allocation
to targets in images: a stronger deflection amplitude is expected in the
area of the visual cortex which is opposite to the location of the target
stimulus.
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