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1. Computational pathology: the systems view

Modern pathology studies of biopsy tissue encompass multi-
ple stainings of histological material, genomics and proteomics
analyses as well as comparative statistical analyses of patient
data. Pathology lays not only a scientific foundation for clinical
medicine but also serves as a bridge between the fundamental sci-
ences in natural science to medicine and patient care. Therefore,
it can be viewed as one of the key hubs for translational research
in the health and life sciences, subsequently facilitating transla-
tional medicine. In particular, the abundance of heterogeneous data
sources with a substantial amount of randomness and noise poses
challenging problems for statistics and machine learning. Auto-
matic processing of this wealth of data promises a standardized
and hopefully more objective diagnosis of the disease state of a
patient than manual inspection can provide today. An automatic
computational pathology framework also enables the medical user
to quantitatively benchmark the processing pipeline and to identify
error sensitive processing steps which can substantially degrade
the final predictions, e.g. of survival times.

1.1. Definition

Computational pathology as well as the medical discipline
pathology is a wide and diverse field which encompass scientific
research as well as day-to-day work in medical clinics. The follow-
ing definition is an attempt for a concise and practical description
of this novel field:

Computational Pathology investigates a complete probabilistic
treatment of scientific and clinical workflows in general pathol-
ogy, i.e. it combines experimental design, statistical pattern
recognition and survival analysis within a unified framework
to answer scientific and clinical questions in pathology.

Fig. 1 depicts a schematic overview of the field and three major
parts it comprises: data generation, image analysis and medical
statistics, which are described in detail in Sections 2-4.

2. Data: tissue and ground truth
2.1. Clear cell renal cell carcinoma

Throughout this review we use renal cell carcinoma (RCC) as
a disease case to design and optimize a computational pathology
framework. We argue that computational pathology frameworks
for other diseases require a conceptually and structurally similar
approach as for RCC.

Renal cell carcinoma figures as one of the 10 most frequent
malignancies in the mortality statistics of Western societies [1].

The prognosis of renal cancer is poor since many patients suffer
already from metastases at the time of first diagnosis. The iden-
tification of biomarkers for prediction of prognosis (prognostic
marker) or response to therapy (predictive marker) is therefore
of utmost importance to improve patient prognosis [2]. Various
prognostic markers have been suggested in the past [3,4], but
estimates of conventional morphological parameters still provide
most valuable information for therapeutical decisions.

Clear cell RCC (ccRCC) emerged as the most common subtype
of renal cancer and it is composed of cells with clear cytoplasm
and typical vessel architecture. ccRCC exhibits an architecturally
diverse histological structure, with solid, alveolar and acinar pat-
terns. The carcinomas typically contain a regular network of small
thin-walled blood vessels, a diagnostically helpful characteristic of
this tumor. Most ccRCC specimen show areas with hemorrhage
or necrosis (Fig. 3d), whereas an inflammatory response is infre-
quently observed. Nuclei tend to be round and uniform with finely
granular and evenly distributed chromatin. Depending upon the
grade of malignancy, nucleoli may be inconspicuous and small,
or large and prominent, with possibly very large nuclei or bizarre
nuclei occurring [1].

The prognosis for patients with RCC depends mainly on the
pathological stage and the grade of the tumor at the time of surgery.
Other prognostic parameters include proliferation rate of tumor
cells and different gene expression patterns. Tannapfel et al. [2]
have shown that cellular proliferation potentially serves as another
measure for predicting biological aggressiveness and, therefore,
for estimating the prognosis. Immunohistochemical assessment of
the MIB-1 (Ki-67) antigen indicates that MIB-1 immunostaining
(Fig. 3d) is an additional prognostic parameter for patient outcome.
Tissue microarrays (TMAs, cf. Section 2.2) were highly represen-
tative of proliferation index and histological grade using bladder
cancer tissue [5].

The TNM staging system specifies the local extension of the pri-
mary tumor (T), the involvement of regional lymph nodes (N), and
the presence of distant metastases (M) as indicators of the dis-
ease state. Wild et al. [6] focus on reassessing the current TNM
staging system for RCC and conclude that outcome prediction
for RCC remains controversial. Although many parameters have
been tested for prognostic significance, only a few have achieved
general acceptance in clinical practice. An especially interesting
observation of Wild et al. [6] is that multivariate Cox proportional
hazards regression models including multiple clinical and patho-
logic covariates were more accurate in predicting patient outcome
than the TNM staging system. On one hand this finding demon-
strates the substantial difficulty of the task and on the other hand it
is a motivation for research in computational pathology to develop
robust machine learning frameworks for reliable and objective pre-
diction of disease progression.
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