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a  b  s  t  r  a  c  t

We  present  a tile-based  approach  for  producing  clinically  relevant  probability  maps  of  prostatic  car-
cinoma  in  histological  sections  from  radical  prostatectomy.  Our  methodology  incorporates  ensemble
learning  for  feature  selection  and  classification  on  expert-annotated  images.  Random  forest  feature  selec-
tion performed  over  varying  training  sets  provides  a  subset  of  generalized  CIEL*a*b*  co-occurrence  texture
features,  while  sample  selection  strategies  with  minimal  constraints  reduce  training  data  requirements
to  achieve  reliable  results.  Ensembles  of  classifiers  are  built  using  expert-annotated  tiles  from  train-
ing  images,  and  scores  for  the  probability  of  cancer  presence  are  calculated  from  the  responses  of each
classifier  in  the  ensemble.  Spatial  filtering  of  tile-based  texture  features  prior  to  classification  results  in
increased  heat-map  coherence  as  well  as AUC  values  of  95% using  ensembles  of  either  random  forests  or
support  vector  machines.  Our approach  is  designed  for adaptation  to  different  imaging  modalities,  image
features,  and  histological  decision  domains.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Clinical assessment and prognosis of prostate cancer in patients
who undergo radical prostatectomy relies on the evaluation of
whole-slide histology sections of prostatic tissue under a micro-
scope. This assessment relies on pathologist interpretation of
the Gleason grading scale, a system devised in 1966 to differ-
entiate tumor grades using tissue architecture [1].  Since that
time, the landscape of prostate cancer has changed dramatically
due to developments such as prostate specific antigen screening,
transrectal ultrasound imaging, multi-core biopsies, immunohis-
tochemistry to detect basal cells, and surgical improvements that
enable whole-organ resection [2,3]. These advances have led to
the increased detection of early stage disease, which has in turn
led to an increase in radical prostatectomy procedures. Modifi-
cations have been made to Gleason grading to keep pace with
clinical understanding [4],  yet pathologist errors and inter-observer
variability have been consistently shown to be problematic under
various conditions [5–11].

∗ Corresponding author. Tel.: +43 660 142 7331.
E-mail addresses: matthew.difranco@ucd.ie, mdifranc@gmail.com

(M.D. DiFranco), padraig.cunningham@ucd.ie (P. Cunningham).

Gleason grading is initiated at low microscopic resolutions
(4–10×) where regions of suspected carcinoma can often be
detected [12]. Haemotoxylin and eosin staining (H&E) provides
tissue-type differentiation through the interpretation of color-
based architectural features. Tissue architecture differences are
interpreted by the observer as textural variations which can often
be detected at low-resolutions. Pathologists then perform differen-
tiation and validation of Gleason grades through the examination
of morphological and cellular features at higher resolutions.

Using traditional microscopy, clinically available image infor-
mation is limited by the capabilities of the microscope and
the pathologist’s own level of knowledge and experience. The
emergence of digital pathology is removing these limitations
by replacing the microscope with computing, which in turn
enables fast, complex and novel processing of microscopic images
using existing capabilities from image processing, machine vision,
content-based image retrieval, data mining, and human–computer
interaction.

As digital slide technologies evolve and costs decrease, whole-
slide imaging (WSI) will become integrated into the clinical
workflow, augmenting or possibly replacing optical microscopic
analysis for certain tasks. At the same time, the potential exists
for digital scanning of existing glass-slide archives for subsequent
development of complex retrospective studies.
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The resolution at which WSI  data can be effectively captured,
stored and processed represents a frontier in microscopic digital
image analysis. For example, when a pathologist requires high-
magnification viewing of images (e.g. 40× and above), a digital scan
captured at 20× becomes of little use and a light microscope is
required. However, an image captured and stored at 100× would
provide the required magnification and remove the need for tradi-
tional slide viewing.

However, whole-slide images present technological challenges
due to their size at full resolution. A whole-section prostate slide
scanned at 40× magnification contains billions of pixels. Image
compression techniques make it possible to store these images at
manageable sizes (<1 GB), but whole-image processing is at present
inefficient in terms of time and computing resource utilization.
Automated tile-based techniques offer a method for high-volume
WSI  processing and analysis which incorporates expert input
(digital annotations), distributed processing environments (cloud
computing and parallel processing), and state-of-the-art machine
vision techniques for dimensionality reduction, tumor detection,
and data visualization.

In this paper, we present a system for producing reliable and
clinically relevant heat-maps of prostate tumor presence proba-
bility (see Figs. 15 and 16)  using a sparsity of data taken from a
limited number of whole-slide training images. Visualization is per-
formed through ensemble classification of tiles in query images.
The ensemble of classifiers is built using expert-annotated tiles
from training images, and probability scores for the cancer pres-
ence are calculated from the responses of each classifier in the
ensemble.

2. Background

2.1. Review of existing prostate cancer detection methods

The Gleason scoring system relies on the architecture of pro-
static tissue patterns, and the majority of work for the computer
aided detection to date has relied in part on architectural or mor-
phological features [13–16].  Extraction of such features generally
requires the segmentation or localization of tissue structures such
as glandular lumen and cell nuclei [17–19].  Approaches which
explicitly identify tissue structures before extracting image fea-
tures seek to translate the tissue patterns seen in digital images
into a representation which fits the language of the Gleason guide-
lines. However, the generalization and reproducibility of such
approaches are hindered by the heterogeneity and variety of pro-
static carcinoma (PCa) patterns in histopathology images.

Approaches using textural features have also been applied for
histological detection and grading of prostate cancer. Such fea-
tures include Gabor filters [15,20,21],  fractal dimension [22], and
wavelet-based features [23]. In their use of fractal dimension
features, Huang and Lee [22] report Gleason grading correct classi-
fication rate (i.e. classification accuracy) of up to 94.6% but use only
205 images of size 512 × 384 pixels and rely on only red-channel
intensities for calculation of texture features. We  demonstrate
through feature selection analysis that red-channel texture fea-
tures do not generalize well on larger datasets.

Jafari-Khouzani and Soltanian-Zadeh [23] perform nearest
neighbor classification of Gleason grades 2–5 using multiwavelets,
wavelet packets and co-occurrence matrices. They report accuracy
as high as 97% using multiwavelets, while the best performance
with co-occurrence features is 84%. However, optimum results
are obtained using (k)-nearest neighbor where k = 1, and cross-
validation folds allow train and test data to come from the same
images, which could lead to over-fitting as shown by DiFranco et al.
[24]. In our methodology, we split our test and training sets at the

image level to ensure that tiles are not classified using models in
which they are included for training.

Prior work has also focused on classification between tumor
and non-tumor tissue. Diamond et al. [13] demonstrate tile-based
prostate tumor detection using textural and morphological fea-
tures and report accuracy as high as 88.9%. However, the classifiers
or validation schemes implemented are not described. Monaco
et al. [16] implement a gland-segmentation approach coupled
with probabilistic pairwise Markov models and report sensitiv-
ity of 87% and specificity of 90%. Doyle et al. [20] implement
an ensemble approach using a hierarchical version of AdaBoost.
They report an overall accuracy of 88%. Tahir and Bouridane
[14] implement another ensemble technique, round-robin clas-
sification, which transforms an (n)-class problem into n × (n − 1)
two-class problems, on multi-spectral prostate histopathology
images. They couple round-robin classification with an optimiza-
tion scheme known as tabu search and report accuracy of 98–100%
for the classification of prostatic carcinoma versus three non-tumor
tissue patterns.

2.2. Ensemble classification and feature selection

Ensemble learning is a technique whereby the outputs of mul-
tiple classifiers are used to improve overall classification accuracy
[25,26]. The decision of an ensemble can be computed from the
output of each classifier using a majority voting scheme [27], and
a probability for the ensemble decision can be measured using
information from the decisions made by each component classifier.
The classifiers that make-up an ensemble represent a collection of
experts, all with varying expertise and specialization based on the
data and variables on which they have been trained. A clinical par-
allel would be a consensus panel composed of experts with varying
background and experience.

Random forest is an ensemble technique which produces accu-
rate classification results by building many classification and
regression tree (CART) classifiers on randomly selected partitions
of a data set [28]. Given a set of (N) examples represented by (M)
attributes, a bootstrapping approach is used to build (T) training
sets of size (N), chosen with replacement from the original (N)
examples, where (T) is the number of decision trees in the random
forest. The remaining examples, known as out-of-bag data, are used
as a test set at each tree.

Randomness is further introduced at the nodes of each decision
tree. For a given forest, a feature subset size m � M is chosen. At each
node in a tree (m), features are selected at random and an optimal
split of the training data is found for those (m) features based on a
Gini split criterion. Trees are grown in this way  without pruning and
to as large an extent as possible. Examples are classified by majority
voting of the classification outputs of all trees in the forest.

The result is an ensemble which randomly varies both the
features and the training examples at each node of each tree.
In addition, randomly selected feature subsets offer a means of
assessing feature interactions. Performance of random forest can be
assessed using the error on out-of-bag examples, thereby remov-
ing the need for separate train and test data sets. Parameters to
set for random forests include the number of trees (nTree)  to grow
and the number of features mTry on which to split at each node of
the tree.

2.3. Random forest feature selection

Random forest classification also provides a mechanism for
embedded feature importance evaluation [28,29].  Like other tree-
based ensemble methods, importance can be assessed naively by
counting instances when variables are selected over all trees in the
forest. More sophisticated approaches assess the impact of indi-
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