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A B S T R A C T

How do we navigate a deeply structured world? Why are you reading this sentence first – and did you actually
look at the fifth word? This review offers some answers by appealing to active inference based on deep temporal
models. It builds on previous formulations of active inference to simulate behavioural and electrophysiological
responses under hierarchical generative models of state transitions. Inverting these models corresponds to
sequential inference, such that the state at any hierarchical level entails a sequence of transitions in the level
below. The deep temporal aspect of these models means that evidence is accumulated over nested time scales,
enabling inferences about narratives (i.e., temporal scenes). We illustrate this behaviour with Bayesian belief
updating – and neuronal process theories – to simulate the epistemic foraging seen in reading. These simulations
reproduce perisaccadic delay period activity and local field potentials seen empirically. Finally, we exploit the
deep structure of these models to simulate responses to local (e.g., font type) and global (e.g., semantic)
violations; reproducing mismatch negativity and P300 responses respectively.

1. Introduction

In recent years, we have applied the free energy principle to
generative models of worlds that can be described in terms of discrete
states in an attempt to understand the embodied Bayesian brain. The
resulting active inference scheme (for Markov decision processes) has
been applied in a variety of domains (see Table 1). This paper takes
active inference to the next level and considers hierarchical models
with deep temporal structure (George and Hawkins, 2009; Kiebel et al.,
2009; LeCun et al., 2015). This structure follows from generative
models that entertain state transitions or sequences over time. The
resulting model enables inference about narratives with deep temporal
structure (c.f., sequential scene construction) of the sort seen in reading.
In short, equipping an agent or simulated subject with deep temporal
models allows them to accumulate evidence over different temporal
scales to find the best explanation for their sensations.

This paper has two agendas: to introduce hierarchical (deep)
generative models for active inference under Markov decision processes
(or hidden Markov models) and to show how their belief updating can
be understood in terms of neuronal processes. The problem we focus on
is how subjects deploy active vision to disambiguate the causes of their
sensations. In other words, we ask how people choose where to look
next, when resolving uncertainty about the underlying conceptual,

semantic or lexical causes of sensory input. This means that we are not
concerned with computational linguistics per se but the more general
problem of epistemic foraging, while using reading as an example.

Epistemics is at the heart of active inference, which is all about
reducing surprise or uncertainty, where uncertainty is expected sur-
prise. Technically, this means that one can describe both inference
(perception) and behaviour (action) in terms of minimising a free
energy functional of probabilistic or Bayesian beliefs. In this setting,
variational free energy approximates surprise and expected free energy
approximates uncertainty (a.k.a. entropy). This single imperative
provides an inclusive account of established (normative) approaches
to perception and action; for example, the principle of maximum
mutual information, the principle of minimum redundancy, formula-
tions of saliency as Bayesian surprise, risk sensitive or KL control,
expected utility theory, and so on (Barlow, 1974; Itti and Baldi, 2009;
Kappen et al., 2012; Ortega and Braun, 2013). Our focus here is on how
subjects use accumulated beliefs about the hidden states of the world to
prescribe active sampling of new information to resolve their uncer-
tainty quickly and efficiently (Ferro et al., 2010).

Our second agenda is to translate these normative (variational)
principles into neurobiology by trying to establish the construct validity
of active inference in terms of behaviour and electrophysiological
responses. We do this at three levels: first, by highlighting the similarity
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between the message passing implied by minimising variational free
energy and the neurobiology of neuronal circuits. Specifically, we try to
associate the dynamics of a gradient descent on variational free energy
with neuronal dynamics based upon neural mass models (Lopes da
Silva, 1991). Furthermore, the exchange of sufficient statistics implicit
in belief propagation is compared with the known characteristics of
extrinsic (between cortical area) and intrinsic (within cortical area)
neuronal connectivity. Second, we try to reproduce reading-like
behaviour – in which epistemically rich information is sampled by
sparse, judicious saccadic eye movements. This enables us to associate
perisaccadic updating with empirical phenomena, such as delay period
activity and perisaccadic local field potentials (Kojima and Goldman-
Rakic, 1982; Purpura et al., 2003; Pastalkova et al., 2008). Finally, in
terms of the non-invasive electrophysiology, we try to reproduce the
well-known violation responses indexed by phenomena like the mis-
match negativity (MMN) and P300 waveforms in event related poten-
tial research (Strauss et al., 2015).

This paper comprises four sections. The first (Active inference and
free energy) briefly reviews active inference, establishing the normative
principles that underlie action and perception. The second section
(Belief propagation and neuronal networks) considers action and
perception, paying special attention to hierarchical generative models
and how the minimisation of free energy could be implemented in the
brain. The third section (Simulations of reading) introduces a particular
generative model used to simulate reading and provides an illustration
of the ensuing behaviour – and simulated electrophysiological re-
sponses. The final section (Simulations of classical violation responses)
rehearses the reading simulations using different prior beliefs to
simulate responses to violations at different hierarchical levels in the
model.

2. Active inference and free energy

Active inference rests upon a generative model that is used to infer
the most likely causes of observable outcomes in terms of expected
states of the world. A generative model is just a probabilistic specifica-
tion of how consequences (outcomes) follow from causes (states). These
states are called latent or hidden because they can only be inferred

through observations. Clearly, observations depend upon action (e.g.,
where you are looking). This requires the generative model to represent
outcomes under different actions or policies. Technically, expectations
about (future) outcomes and their hidden causes are optimised by
minimising variational free energy, which renders them the most likely
(posterior) expectations about the (future) states of the world, given
(past) observations. This follows because the variational free energy is
an upper bound on (negative) log Bayesian model evidence; also known
as surprise, surprisal or self-information (Dayan et al., 1995). Crucially,
the prior probability of each policy (i.e., action or plan) is the free
energy expected under that policy (Friston et al., 2015). This means
that policies are more probable if they minimise expected surprise or
resolve uncertainty.

Evaluating the expected free energy of plausible policies – and
implicitly their posterior probabilities – enables the most likely action
to the selected. This action generates a new outcome and the cycle of
perception and action starts again. The resulting behaviour represents a
principled sampling of sensory cues that has epistemic, uncertainty
reducing and pragmatic, surprise reducing aspects. The pragmatic
aspect follows from prior beliefs or preferences about future outcomes
that makes some outcomes more surprising than others. For example, I
would not expect to find myself dismembered or humiliated – and
would therefore avoid these surprising state of affairs. On this view,
behaviour is dominated by epistemic imperatives until there is no
further uncertainty to resolve. At this point pragmatic (prior) prefer-
ences predominate, such that explorative behaviour gives way to
exploitative behaviour. In this paper, we focus on epistemic behaviour
and only use prior preferences to establish a task or instruction set.
Namely, to report a categorical decision when sufficiently confident;
i.e., under the prior belief one does not make mistakes.

2.1. Hierarchical generative models

We are concerned here with hierarchical generative models in
which the outcomes of one level generate the hidden states at a lower
level. Fig. 1 provides a schematic of this sort of model. Outcomes
depend upon hidden states, while hidden states unfold in a way that
depends upon a sequence of actions or a policy. The generative model is

Table 1
Applications of active inference for Markov decision processes.

Application Comment References

Decision making under uncertainty Initial formulation of active inference for Markov decision processes
and sequential policy optimisation

Friston et al. (2012b)

Optimal control (the mountain car problem) Illustration of risk sensitive or KL control in an engineering benchmark Friston et al. (2012a)
Evidence accumulation: Urns task Demonstration of how beliefs states are absorbed into a generative

model
FitzGerald et al. (2015b, 2015c)

Addiction Application to psychopathology Schwartenbeck et al. (2015c)
Dopaminergic responses Associating dopamine with the encoding of (expected) precision

provides a plausible account of dopaminergic discharges
Friston et al. (2014), FitzGerald
et al. (2015a)

Computational fMRI Using Bayes optimal precision to predict activity in dopaminergic
areas

Schwartenbeck et al. (2015a)

Choice preferences and epistemics Empirical testing of the hypothesis that people prefer to keep options
open

Schwartenbeck et al. (2015b)

Behavioural economics and trust games Examining the effects of prior beliefs about self and others Moutoussis et al. (2014)
Foraging and two step mazes Formulation of epistemic and pragmatic value in terms of expected free

energy
Friston et al. (2015)

Habit learning, reversal learning and devaluation Learning as minimising variational free energy with respect to model
parameters – and action selection as Bayesian model averaging

FitzGerald et al. (2014), Friston
et al. (2016)

Saccadic searches and scene construction Mean field approximation for multifactorial hidden states, enabling
high dimensional beliefs and outcomes: c.f., functional segregation

Friston and Buzsaki (2016),
Mirza et al. (2016)

Electrophysiological responses: place-cell activity, omission related
responses, mismatch negativity, P300, phase-procession, theta-
gamma coupling

Simulating neuronal processing with a gradient descent on variational
free energy; c.f., dynamic Bayesian belief propagation based on
marginal free energy

In press

Structure learning, sleep and insight Inclusion of parameters into expected free energy to enable structure
learning via Bayesian model reduction

Under review

Narrative construction and reading Hierarchical generalisation of generative model with deep temporal
structure

Current paper
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