Accepted Manuscript

Transcranial direct current stimulation (tDCS) reveals a dissociation between SNARC and MARC effects: implication for the polarity correspondence account

Elisa Di Rosa, Lara Bardi, Carlo Umiltà, Fabio Masina, Margherita Forgione, Daniela Mapelli

orgione, Daniela

ortex

PII: S0010-9452(17)30157-0

DOI: 10.1016/j.cortex.2017.05.002

Reference: CORTEX 2012

To appear in: Cortex

Received Date: 26 July 2016

Revised Date: 18 February 2017

Accepted Date: 13 May 2017

Please cite this article as: Di Rosa E, Bardi L, Umiltà C, Masina F, Forgione M, Mapelli D, Transcranial direct current stimulation (tDCS) reveals a dissociation between SNARC and MARC effects: implication for the polarity correspondence account, *CORTEX* (2017), doi: 10.1016/j.cortex.2017.05.002.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Abstract

The concept of stimulus response compatibility (SRC) refers to the existence of a privileged association between a specific stimulus feature and a specific response feature. Two examples of SRC are the Spatial Numerical Association of Response Codes (SNARC) and the Markedness Association of Response Codes (MARC) effects. According to the polarity correspondence principle, these two SRC effects occur because of a match between the most salient dimensions of stimulus and response. Specifically, the SNARC effect would be caused by a match between rightsided responses and large numbers, while a match between right-sided responses and even numbers would give rise to the MARC effect. The aim of the present study was to test the validity of the polarity correspondence principle in explaining these two SRC effects. To this end, we applied transcranial direct current stimulation (tDCS) over left and right posterior parietal cortex (PPC), which is thought to be the neural basis of salience processing, during a parity judgment task. Results showed that cathodal tDCS over the PPC significantly reduced the MARC effect but did not affect the SNARC effect, suggesting a dissociation between the two effects. That is, the MARC would rely on a salience processing mechanism, whereas the SNARC would not. Despite this interpretation is in need of further experimental confirmations (i.e. testing different tasks or using different tDCS montages), our results suggest that the polarity correspondence principle can be a plausible explanation only for the MARC effect but not for the SNARC effect.

Download English Version:

https://daneshyari.com/en/article/5044595

Download Persian Version:

https://daneshyari.com/article/5044595

<u>Daneshyari.com</u>