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a b s t r a c t

This paper presents a novel approach to define deformation invariant attribute vector (DIAV) for each voxel
in 3D brain image for the purpose of anatomic correspondence detection. The DIAV method is validated
by using synthesized deformation in 3D brain MRI images. Both theoretic analysis and experimental
studies demonstrate that the proposed DIAV is invariant to general nonlinear deformation. Moreover, our
experimental results show that the DIAV is able to capture rich anatomic information around the voxels
and exhibit strong discriminative ability. The DIAV has been integrated into a deformable registration
algorithm for longitudinal brain MR images, and the results on both simulated and real brain images are
provided to demonstrate the good performance of the proposed registration algorithm based on matching
of DIAVs.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Deformable registration of 3D brain images has been an impor-
tant research area in the field of neuroimaging, and a variety
of methods have been developed over the past two decades
[1,3,4,6,7,9,10,12,14,26,28,34,35,41,42]. Based on registered brain
images, one can perform group or individual analysis of neu-
roanatomic structures to assess differences in terms of age, gender,
genetic background, and handedness, etc. [2,6,24,37], to define
disease-specific signatures and detect individual cortical atrophy
[36,39], to automatically label and visualize cortical structure [18],
to map brain function [38,39,40], or to perform neurosurgical plan-
ning [15].

In general, 3D brain image registration methods fall into the
following two broad categories: similarity-based methods and
feature-based methods. In similarity-based methods, the registra-
tion is achieved by seeking to maximize the similarity between
the template image and the reference image via a deformation
model, which can be based on elastic, biomechanical, fluid, or
parametric approach [12,26,42]. The general similarity measures
for deformable image registration could be intensity [13], mutual
information [16,23,32,41], or local frequency representation [45]. In
feature-based methods, anatomical feature such as surface, land-
mark points, or ridge are first detected in two brain images [28,43],
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and then a spatial transformation is used to map correspondence
features.

One central issue in deformable brain image registration algo-
rithms is to develop morphological features for the detection of
anatomic correspondences between the model image and the sub-
ject image. Recently, several methods for defining the attribute
vector with rich geometric information have been proposed, such as
moment-based method [28], wavelet-based method [43], and local
spatial intensity histogram-based method [29]. In moment-based
attribute vector method [28], MR brain images are first segmented
into GM, WM, and CSF, and then the attribute vector of each voxel is
extracted by computing the rotationally invariant moment feature
in a spherical region for each tissue class. Since the moment-based
attribute vector can be used to capture distinctive local anatomical
information, it has been successfully applied to deformable vol-
umetric MR brain image registration [28]. In the wavelet-based
attribute vector method [43], the attribute vector is calculated
from wavelet high-pass sub-images by applying the radial profiling
method. The wavelet-based attribute vector then serves as the mor-
phological signature for each voxel in deformable registration [43].
In the local spatial intensity histogram-based method [29], local
spatial intensity histograms are first computed in a spherical region
in each level of multi-resolution images and the attribute vector is
then defined by calculating regular moment features. The local spa-
tial intensity histogram is rotationally invariant and captures spatial
information by integrating multi-resolution local histograms.

Although these above attribute vectors are translationally and
rotationally invariant, the deformation between two longitudinal
volumetric images is typically nonlinear. To address this problem,
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we propose a novel attribute vector that reflects the underly-
ing anatomy and geometric information, while being deformation
invariant. Deformation invariance means that the attribute vectors
are the same, or very close, with the continuing homeomorphic
deformation of 3D volumetric image. The deformation invariant
attribute vector (DIAV) is very desirable in deformable registra-
tion of longitudinal brain images because: (1) the DIAV embodies
rich geometric and intensity information of the voxel; (2) the
similarity between DIAVs is a good indicator of anatomic correspon-
dences, especially in longitudinal or time-series brain image data,
as the corresponding anatomic landmarks will have similar mor-
phological profiles; and (3) the DIAV represents the morphological
signature of a specific voxel throughout the deformation proce-
dure and thus reduces the ambiguity in anatomic correspondence
detection.

Our work was particularly inspired by Ling and Jacob’s method
[20] for 2D image matching using geodesic intensity histogram
(GIH), which is the intensity histogram of pixels extracted within
a geodesic distance as deformation invariant local descriptor. We
extended this work to the deformation invariant attribute vector in
3D brain images [19] and validated the method using synthesized
deformations of 3D brain MR images. Our experimental studies
show that the proposed DIAV achieves good deformation invari-
ance. In addition, the DIAV embodies rich geometric and intensity
information, and is quite distinctive to reduce the ambiguity in
anatomic correspondence detection. Based on the matching of
DIAV, a deformable registration algorithm has been developed for
registration of longitudinal brain MR images. Experimental results
on both simulated and real brain images are provided to demon-
strate the performance of the proposed registration algorithm.

2. Method: deformation invariant attribute vector

2.1. Deformation invariant attribute for 2D images

This section briefly presents the basic idea of the method intro-
duced by Ling and Jacobs for deformation invariant 2D image
matching (please refer to [20] for more details). Motivated by the
Beltrami framework [31], Ling and Jacobs treated a 2D intensity
image as a surface embedded in 3D space, by assigning an aspect
weight ˛ to the intensity value as the third coordinate, and weight-
ing the first two coordinates (x and y) by 1 − ˛. As ˛ increases,
the image deformation has less influence on the geodesic distance,
which is the distance of the shortest path between two points on
the embedded surface. By taking the limit of ˛ to 1, the geodesic
distance becomes deformation invariant. In [20], the fast march-
ing algorithm [27] is used to compute the geodesic distance on the
embedded surface. The authors also did sampling in the geodesic
distance support region (within certain geodesic level curves) to
obtain deformation invariant neighborhood samples for interest
points and then used a geodesic intensity histogram as deforma-
tion invariant local descriptors for 2D image matching by the �2

distance. This method is sound in theory and achieves promising
matching results in practice.

2.2. Deformation invariant attribute for 3D images

In this subsection, we first extend the framework of deforma-
tion invariance in 2D space to 3D. Then, we design the deformation
invariant attribute vector in 3D image using the geodesic intensity
histogram.

2.2.1. 3D image embedded in 4D space
We treat a volumetric image as a 3D surface embedded in 4D

space. Let G(x,y,z) be a volumetric image defined as G:R3 → [0,1].
We consider the deformation as a homeomorphism between

images [20], meaning that the mapping is one-to-one. Denote
the embedding of an image G(x,y,z) with aspect weight ˛ as
�(G;˛) = (x′ = (1 − ˛)x,y′ = (1 − ˛)y,z′ = (1 − ˛)z,g′ = ˛G(x,y,z). Let � be
a regular curve on �, and parameter p∈[p1,p2] (p1 and p2 are the
boundary points). Then we have:

� = (x′(p), y′(p), z′(p), g′(p))

= ((1 − ˛)x(p), (1 − ˛)y(p), (1 − ˛)z(p), ˛G(x(p), y(p), z(p)))
(1)

The length of curve � is computed as
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Take the limit of ˛ to 1:

lim
˛→1

s =
∫ p2

p1

|Gp|dp (3)

In the above formulas, the subscript p denotes partial derivative,
e.g., xp = dx/dp, Gp = dG/dp. From Eq. (2), it is apparent that when ˛
is large (e.g., approaching 1), it is the intensity change (represented
by Gp) that dominates the length (s) of the curve � . When taking
the limit of ˛ to 1, it is obvious that the curve length only relies on
the intensity of volumetric image G, which indicates that the curve
length (s) achieves deformation invariance when ˛ → 1.

2.2.2. Geodesic distance in 3D image
As shown above, the geodesic distance between two points,

which is the shortest path between them on the embedded surface,
is deformation invariant when ˛ approaches 1. Given an interest
point p(x,y,z) in 3D image, the geodesic distance from it to the other
points on the embedded surface �(I;˛) can be computed using the
fast marching algorithm [27]. The fast marching method was devel-
oped to effectively solve the problem of front propagation, involving
computing a new position of an initial curve when a force F is
applied. A function T denotes the time when the curve reaches a
position, and the Eikonal equation governs the curve propagation:

|∇T |F = 1 (4)

where �T is the gradient of T. In our application, we use the
extended fast marching method in 3D image in [8]. To compute
the geodesic distance, the parameter T in the Eq. (4) is set as the
geodesic distance, and the marching speed F is set to:

F = 1√
(1 − ˛)2 + ˛2G2

x + ˛2G2
y + ˛2G2

z

(5)

where the subscripts (x, y and z) denote partial derivatives. Fig. 1
shows a color-coded geodesic distance map from a selected voxel
(marked with a red cross) to other voxels in a volumetric MR brain
image. Here, the red color indicates small geodesic distance, while
blue color indicates large geodesic distance. For convenient visual
inspection, we only show selected 2D orthogonal slices. In the
example, ˛ is set to be 0.98. Evidently, the geodesic distance in 3D
image can be used to capture the geometry of image intensities.

2.2.3. Deformation invariant attribute vector
As both the geodesic distance (when ˛ → 1) and intensity are

deformation invariant, we can use geodesic distance histogram
to define deformation invariant attribute vector (DIAV). Given an
interest voxel p, along with neighboring voxels in the geodesic
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