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a b s t r a c t

The paper presents a versatile nonlinear diffusion method to visually enhance the angiogram images
for improving the clinical diagnosis. Traditional nonlinear diffusion has been shown very effective in
edge-preserved smoothing of images. However, the existing nonlinear diffusion models suffer several
drawbacks: sensitivity to the choice of the conductance parameter, limited range of edge enhancement,
and the sensitivity to the selection of evolution time. The new anisotropic diffusion we proposed is based
on facet model which can solve the issues mentioned above adaptively according to the image content.
This method uses facet model for fitting the image to reduce noise, and uses the sum square of eigenval-
ues of Hessian as the standard of the conductance parameter selection synchronously. The capability of
dealing with noise and conductance parameter can also change adaptively in the whole diffusion process.
Moreover, our method is not sensitive to the choice of evolution time. Experimental results show that our
new method is more effective than the original anisotropic diffusion.

Crown Copyright © 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

X-ray angiogram image plays a very important role in clinical
diagnosis. However, the image quality is usually not very good
owing to various reasons such as the complex background and
some noise. So it is necessary to enhance these images to facilitate
the following processing or diagnosis. Much effort has been spent
on this problem with a focus on multi-scale filtering [18,21–24].
These methods were proved to be effective to the images with lit-
tle noise [21–23], while to those with large noise, the edges might
be destroyed because the Gaussian filter was introduced to their
implementations [18,24].

The anisotropic diffusion proposed by Perona and Malik [2] is
a powerful tool to solve the problem met in angiogram enhance-
ment. Anisotropic diffusion methods were popularly used in image
processing in the past decade [1–3,8,11,12]. The feature of these
functions was reflected by their diffusion coefficients. The most
well-known diffusion coefficients were proposed by Perona and
Malik [2], but Catte et al. had shown that they led to an ill-posed
diffusion: a small perturbation in the data might cause significant
changes in the result [3,4]. To deal with this problem, they used
a Gaussian-convolved version [5] of noisy images to compute dif-
fusion coefficients. However, the method smoothed the edges in
images due to the linear filter, although it could rapidly elimi-
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nate noise at the same time. Furthermore, how to select a proper
Gaussian standard deviation was another serious problem. Gener-
ally, on the one hand, the smaller the standard deviation was, the
poorer the effect of smoothing was. On the other hand, a large stan-
dard deviation would make the smoothing overrunning so that the
smoothed images would be blurred. Besides, during the procedure
the noise became little and little so that it was not suitable to use
an unchanged standard deviation.

Another problem in fixation of diffusion coefficients is how to
select a proper conductance parameter. Traditional conductance
parameter is fixed and consistent in the whole image. Li [13] pro-
posed to make the conductance parameter adaptive according to
the content in angiogram images. But in the process of iteration the
conductance parameter is unchanged in spite of the altered image
content. The two questions above were also mentioned in [14]; Li
used special forms of �(t) and K(t). Although his experimental result
showed it could get a better result, the selection of �(t) and K(t) also
needed experimental decision.

In this paper, a new adaptive anisotropic diffusion based on facet
model for angiogram images [6,9,10] is introduced. The facet model
is a powerful tool for image processing; it is used in many aspects
[6,7,9,10]. By using facet model the questions mentioned above can
be adaptively solved in angiogram images.

2. Anisotropic diffusion models

Before introducing the anisotropic diffusion, we define some
notations first. I represents an image and I(t, x, y) the gray value
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of position (x, y) in image I at time t; its gradient is given by �I = [Ix,
Iy]T and the magnitude of its gradient by |�I|. The divergence of a
vector �E is denoted as div(�E).

The basic anisotropic diffusion equation is

∂I

∂t
= div[c(

∣∣∇I
∣∣)∇I] (1)

where c(x) is the anisotropic diffusion coefficient. A desirable
behavior of this function is that Eq. (1) diffuses more in smooth
areas and less across edges. The following equation gives one of the
functions with such a quality:

c(
∣∣∇I

∣∣) = 1

1 + (
∣∣∇I

∣∣ /K)
2

(2)

where K is the conductance parameter. To deal with the ill-posed
diffusion due to noise, Catte et al. use

∂I

∂t
= div[c(

∣∣I ∗ G�

∣∣)∇I] (3)

where I * G� is the convolution of I and a Gaussian filter with stan-
dard deviation �. In Eq. (3), � is fixed, which seems not quite
desirable because if the unwanted intensity variations diminish
more rapidly than the signal of interest, the gradient measurements
will become more and more reliable so that the uniform smoothing
becomes less important as the equation evolves. This suggests that
the scale parameter � should be decreased as time goes by. So how
to choose a proper �(t) to achieve optimal results is still a consider-
able problem. Different �(t) would give different results. With the
evolution of the processing, more and more noise will be smoothed,
so the low-pass filtering performance introduced for diminishing
noise in each iterative step should become weaker and weaker.

Another problem of implementing anisotropic diffusion is how
to select the conductance parameter. The value of the conductance
parameter K greatly affects the diffusion. Generally speaking, a large
K will lead to smoothness whereas a little K will lead to sharpness in
local regions of images. A fixed K during the diffusion process will
simplify the implementation. However, a problem will be caused if
the value of K is not suitable, i.e. the region we want to enhance will
be smoothed instead. On the contrary, if the value of K is too low, it
will cause enhancement where there is much noise. Furthermore,
a too low K will weaker the diffusion effects, which results in too
many iterations. In this case the parameter should be equilibrated.
Moreover, different images have different ideal values of K. There-
fore, a natural approach to solving the problems above is to make
this parameter adaptive.

In [14], Li pointed out that conductance parameter K should
change during the whole process of diffusion. He gave some
typical forms of K(t) which couldn’t be applied for all images per-
fectly.

3. Facet-model based anisotropic diffusion

To solve the problems mentioned above, we use facet model to
perfect the anisotropic diffusion. Our method mainly consists of
two aspects. One is use of facet model fitting to deal with noise
adaptively and the other is using Hessian matrix to assist decision
of the conductance parameter according to the image. Thus our
proposed method can deal with different images adaptively.

3.1. Introduction of cubic facet model

The cubic facet model [6,9,10] assumes that in each neighbor-
hood of an image, the underlying gray-level intensity surface can be
approximated by a bivariate cubic function f. The two-dimensional
discrete orthogonal polynomial (DOP) basis set can be constructed

from the tensor product of the two sets of one-dimensional discrete
polynomials. For a cubic function, the polynomial bases with order
higher than 3 can be ignored.

Let S be a symmetric 2D neighborhood defined on R × C, and
I(r, C) be the observed intensity value at (r, c) ∈ S. Let {g0(r, c), g1(r,
c),. . ., gN(r, c)} be the set of 2D DOP basis functions. As a result, for
instance with 5 × 5 pixels kernel size, the bivariate cubic function
f(r, c), expressed using discrete orthogonal polynomials, is

f (r, c) = K1 + K2r + K3c + K4(r2 − 2) + K5rc + K6(c2 − 2)

+ K7

(
r3 − 17

5
r
)

+ K8(r2 − 2)c + K9r(c2 − 2)

+ K10

(
c3 − 17

5
c
)

(4)

where Ki, i = 1, . . ., 10 are coefficients for the bivariate cubic function
expressed in discrete orthogonal polynomials.

In the cubic facet model, each facet centered about a given pixel
may be approximated by the bivariate cubic function in canonical
form, as shown in (4). Evaluating the first row and column partial
derivatives at the neighborhood centre (0, 0) (i.e. r = 0 and c = 0)
yields the first and second directional derivatives.

∂f

∂r
= K2 − 17

5
K7 − 2K9,

∂f

∂c
= K3 − 17

5
K10 − 2K8,

∂2f

∂r2
= 2K4,

∂2f

∂r∂c
= K5,

∂2f

∂r∂c
= K5,

∂2f

∂c2
= 2K6 (5)

where Ki are the fitting coefficients. Each coefficient Ki can be
computed independently by convolving the image with the corre-
sponding weight kernel. For more details about cubic facet model
fitting, please see Refs. [6,9,10].

3.2. The conductance parameter as a function of evolution

For angiogram images, Li [13] used Hessian matrix to assist deci-
sion of the conductance parameter K according to the image. To
achieve this goal, we turn to make a local analysis of the image. One
common way is to perform Taylor expansion in the neighborhood
of a point x:

I(x + ∇x) ≈ I(x) + ∇xT ∇I(x) + �xT H(x) �x (6)

where �x and H(x) are the gradient and the Hessian matrix at time
t and at the point x, respectively. The Hessian matrix at one point
in the image is

H =

⎡
⎢⎣

∂2I

∂x2

∂2I

∂x∂y
∂2I

∂y∂x

∂2I

∂y2

⎤
⎥⎦ (7)

We assume that the Hessian matrix at one point has two eigenval-
ues �1 and �2. From experiments we get that the square sum of
eigenvalues is small in vein regions and large in backgrounds. Con-
sidering the fact that we are more interested in regions containing
vessels in angiogram images, we hope to achieve enhancement in
these regions. On the contrary, in the regions where the measures
are high we hope to achieve smoothing since they are more likely
to be the background. That is to say, the conductance parameter
should be high in the regions where the measures are high and be
low in the regions where the measures are low. So the conductance
parameter should be different in each pixel in image.

Based on the discussion above, we contrive the conductance
parameter as a function of the model as follows:

K = (�2
1 + �2

2)
1/2

(8)
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