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A B S T R A C T

Cognitive tasks recruit multiple brain regions. Understanding how these regions influence each other (the
network structure) is an important step to characterize the neural basis of cognitive processes. Often, limited
evidence is available to restrict the range of hypotheses a priori, and techniques that sift efficiently through a
large number of possible network structures are needed (network discovery). This article introduces a novel
modelling technique for network discovery (Dynamic Network Modelling or DNM) that builds on ideas from
Granger Causality and Dynamic Causal Modelling introducing three key changes: (1) efficient network discovery
is implemented with statistical tests on the consistency of model parameters across participants, (2) the tests
take into account the magnitude and sign of each influence, and (3) variance explained in independent data is
used as an absolute (rather than relative) measure of the quality of the network model. In this article, we outline
the functioning of DNM, we validate DNM in simulated data for which the ground truth is known, and we report
an example of its application to the investigation of influences between regions during emotion recognition,
revealing top-down influences from brain regions encoding abstract representations of emotions (medial
prefrontal cortex and superior temporal sulcus) onto regions engaged in the perceptual analysis of facial
expressions (occipital face area and fusiform face area) when participants are asked to switch between reporting
the emotional valence and the age of a face.

New and noteworthy

In this article we introduce a new analysis method (Dynamic
Network Modelling or DNM) which performs efficient for network
discovery by testing the consistency of vector autoregressive (VAR)
model parameters across participants. DNM provides information
about the direction and sign (inhibitory vs excitatory) of influences
between brain regions, and generates measures of variance explained
in independent data to evaluate quality of fit. The method is applied to
brain regions engaged in emotion recognition, individuating a similar
network structure across two separate experiments.

1. Introduction

When we perform a task, such as recognizing a face, attributing
mental states to others, or understanding a sentence, multiple brain
regions are engaged (Ishai, 2008; Gallagher and Frith, 2003;
Fedorenko and Thompson-Schill, 2014). Studying how these brain
regions influence each other is an important step to understand the
neural mechanisms underlying task performance. Influences between
brain regions can be specific to the particular task a participant is

performing. For example, face-selective brain regions might influence
each other more when we recognize a face than when we recognize a
scene. For this reason, we need a method that goes beyond measuring
the presence of anatomical connections between regions, and to
investigate the relations between the regions' responses in the context
of a specific experimental paradigm.

The direction of an influence can convey information about its
function. For example, an influence from the ventral visual stream to
prefrontal cortex is likely to convey bottom-up perceptual information
to categorization and decision processes, while an influence from
prefrontal cortex to the ventral visual stream is more likely to affect
visual processing via top-down attentional selection (Buschman and
Miller, 2007). Directed influences between brain regions can also
contribute to characterize the functional role of a brain region by
investigating how it receives inputs and conveys outputs to other
regions with functional roles that are better understood.

Directed influences can be studied using temporal precedence:
observing if earlier responses in a region contribute to predicting later
responses in another region. Studying temporal precedence with
functional magnetic resonance imaging (fMRI) presents unique ad-
vantages but also unique challenges. Data can be acquired noninva-
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sively, with good resolution, and covering the entire brain, making
fMRI well-suited to study long-range influences and investigate
uniquely human aspects of cognition. At the same time, fMRI measures
Blood-Oxygen Level Dependent (BOLD) signal, whose timing is
affected by the local properties of vasculature. Adequate steps must
be taken to control for the variability in BOLD timing between regions.

Depending on the evidence already available, different approaches
to studying influences can be more or less suitable. In some cases, the
previous evidence can be used to restrict a-priori the hypotheses about
the influences between a set of brain regions, paving the way for
confirmatory analyses. Often, however, limited evidence is available,
and a very broad range of different influences are possible. Currently,
the main techniques used to study influences between brain regions
with fMRI are Granger Causality (GC, Roebroeck et al., 2005) and
Dynamic Causal Modelling (DCM, Friston et al., 2003). Each of these
techniques has important strengths, but also properties that may not be
desirable in some data analysis contexts.

1.1. Granger causality

In GC (Roebroeck et al., 2005), the influence of one brain region on
another is measured as a function of the variance in the responses in
the latter region that is explained by earlier responses in the former, in
addition to the variance explained by the latter region itself (see
Appendix B for a more formal description). GC thus offers an intuitive
measure of influences between regions which is not computationally
costly to obtain. Nevertheless, GC has some disadvantages when
applied to haemodynamic responses measured by fMRI. First, in its
current form Granger causality is difficult to apply to the modelling of
influences in different conditions within fast event-related designs.
Separate models are used for the different conditions that need to be
compared, and in fast event-related designs this would require break-
ing up the timeseries in short chunks that would impair autoregressive
modelling. Second, since standard GC is based on variance explained, it
does not measure whether stronger responses in one region lead to
stronger or weaker responses in another (i.e. the ‘sign’ of the influence),
or even whether this feature of the influence is consistent across
participants. Investigating the sign of interactions provides additional
insights into their functional role, and its interpretation in terms of
excitation and inhibition has been pioneered in the clinical literature in
recent studies (Hamilton et al., 2011; Chen et al., 2009).

1.2. Dynamic causal modelling

In DCM (Friston et al., 2003), the change in neural response in each
brain region is modeled as a function of the stimulus and the input
from other regions using ordinary differential equations (see Appendix
C for a more formal description). Given a set of brain regions and a set
of conditions, there is a fixed number of possible parameters. A
candidate model is specified by providing, for each possible parameter,
a 1 if that parameter will be included in the candidate model (whether a
connection‘exists’ in that candidate model), and a 0 otherwise. The
parameters that are included are then estimated with the expectation-
maximization (EM) algorithm, and the best candidate model is chosen
using Bayesian model comparison. The presence of condition-depen-
dent influences makes DCM suitable for the analysis of fast event-
related designs, and the use of priors mitigates overfitting acting as a
form of regularization.

The proposed DNM approach adapts many of the strengths of
DCM, but takes a different approach to two key challenges. The first
challenge is network discovery. DCM is designed as a confirmatory
technique, and therefore it is particularly suitable for choosing between
models that have been identified on the basis of prior evidence.
Searching through larger hypothesis spaces in DCM is computationally
costly (but see Friston and Penny (2011) for an ingenious technique to
increase speed); but more importantly, DCM computes the posterior

probability of the best model, relative to the set of considered models.
This estimate is most useful when researchers can be confident that
their a priori hypothesis space includes most or all plausible models of
the network. By contrast, DNM is designed as an exploratory or
network-discovery approach. We propose that DNM can be used by
researchers who cannot restrict their hypothesis space to a small set of
models based on existing evidence, or who are unsure whether the
limited temporal resolution of fMRI data is sufficient to reveal any
robust inter-regional influences.

Whereas DCM compares full network models (each model is a
description of the overall structure of the network), DNM assesses the
variance in independent data explained by each individual parameter
(or connection), using random effects statistical tests on parameter
values to efficiently search all possible connections. A consequence of
this difference is that whereas the best model chosen by DCM includes
both the existing and the absent connections, DNM (like traditional
null-hypothesis tests) makes claims about the existing connections, but
not about the absent connections. On the other hand, DNM provides an
absolute, not relative, estimate of the variance explained by each
connection in independent data. This intuitive measure of the quality
of the model is especially useful for exploratory or network-discovery
analyses.

Existing packages in DCM employ free energy to assess quality of
the model fitting to the data. Although this function is based in the
same data used for model selection, it is not biased in favor of complex
models. DCM also offers the option to calculate variance explained by
each model, but using the same data used for model selection. As a
consequence, the variance explained by the selected model is over-
estimated. By contrast, DNM uses variance explained in independent
data. Similarly to free energy, this is not biased by model complexity.
However, variance explained in independent data has an important
additional asset: it is an accurate estimate of the absolute measure of
goodness of fit. Variance explained in independent data can be used to
how well the model fits the current data (for example, making clear
when even the best model provides a relatively poor fit), but also to
compare model fits across experiments and populations. Therefore we
chose variance explained in independent data as a key measure to
evaluate quality of fit in DNM.

The second challenge is how to combine evidence across partici-
pants who may have individual differences in the strength of each
connection. In DCM, each candidate model specifies the existence and
direction of connections, but not their value (Stephan et al., 2010).
That is, in DCM, a connection is deemed present if it explains variance,
regardless of whether the parameters are similar (or even the same
sign, that is ‘excitatory’ vs ‘inhibitory’) across participants. This
approach grants DCM the flexibility to identify connections with highly
variable strengths across participants, buthas consequences for the
intuitive interpretation of the resulting model graphs. A high degree of
variability in the parameter values across participants does not affect
the probability of the model given the data. By contrast, DNM follows
traditional null-hypothesis testing, in assessing the reliability of the
magnitude (and sign) of each parameter across participants. This
difference can be illustrated using methods for testing whether an
experimental condition leads to a significantly greater response than
baseline. In standard fMRI analyses, using a general linear model, a
voxel is deemed to show a significant response if the magnitude (i.e.
beta parameter) of response is reliable (similar in both magnitude and
sign) across participants. A valid but different analysis would ask
whether including the predictor for the experimental condition im-
proves the fit of the model across participants (enough to compensate
for the increased complexity of the model). In this case, the beta values
might be highly variable, or even positive for some participants and
negative for other participants, as long as they contribute enough to
improving the model fit in each participant. Both of these analyses are
valid, but address different questions. DCM takes an approach similar
to the second analysis: when a model including is selected, we can infer
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