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Abstract

Computed tomography angiography (CTA) is useful for diagnosing and planning treatment of heart disease. However, contrast agent in sur-
rounding structures (such as the aorta and left ventricle) makes 3D visualisation of the coronary arteries difficult. This paper presents a composite
method employing segmentation and volume rendering to overcome this issue. A key contribution is a novel Fast Marching minimal path cost
function for vessel centreline extraction. The resultant centreline is used to compute a measure of vessel lumen, which indicates the degree of
stenosis (narrowing of a vessel). Two volume visualisation techniques are presented which utilise the segmented arteries and lumen measure. The
system is evaluated and demonstrated using synthetic and clinically obtained datasets.
© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Coronary heart disease is a major health concern. This disease
stems from the underlying problem of atherosclerosis, which is
a build up of plaque (consisting of substances including choles-
terol, calcium, and others) on the interior surface of arteries
supplying the heart. Coronary heart disease typically manifests
in two forms: heart attack, and angina. A heart attack occurs
when blood flow is completely blocked, typically from a dis-
lodged portion of plaque. Angina – typically brought on by
physical activity – is a chest pain or discomfort caused by an
inadequate blood flow due to a narrowed artery.

Computed tomography angiography (CTA) provides high-
resolution, high-contrast images of the thoracic cavity and as
such is emerging as a useful imaging modality for diagnosis
and treatment planning for coronary heart disease [1]. An intra-
venous contrast agent (such as an iodine-based compound) is
injected into the patient causing the blood – and hence vessels –
to exhibit high intensities in the resultant images [31]. In prac-

∗ Corresponding author at: 2 George Street, GPO Box 2434, Brisbane, Queens-
land 4001, Australia. Tel.: +61 7 401 451 850.

E-mail addresses: dan.mueller@philips.com, d.mueller@qut.edu.au
(D. Mueller), anthony@scm.uws.edu.au (A. Maeder).

tice, motion artefacts due to the beating heart must be reduced
using electrocardiographic (ECG) retrospective reconstruction
(called ECG gating) [26].

From the acquired images, radiologists and cardiac sur-
geons require tools to easily identify stenotic (narrowed or
constricted) arteries. A number of post-processing techniques
are currently employed including: thin-slab maximum intensity
projection (MIP) [12], curved planar reformatting (CPR) [17],
and direct volume rendering (DVR) [35]. Each of these tech-
niques exhibit varying strengths and weaknesses, depending on
the task: MIP is useful for visualising calcified plaques, however
3D information is discarded; CPR lays flat vessels of interest,
but surrounding contextual structures appear deformed; DVR
can depict the 3D relationship between vascular and contex-
tual structures, however specifying display parameters to clearly
visualise the arteries is difficult and sometimes not possible.
Hybrid rendering approaches [38] (which display both direct
volume rendered and segmented polygonal structures) or tagged
volume rendering [25] (which uses a number of a priori binary
volumes to separate structures of interest) are other suitable
techniques.

This paper proposes the use of segmentation methods to aid
visualisation of stenotic vessels. The proposed technique is rele-
vant for a range of vascular images and applications, however the
focus is on the coronary arteries in CTA. The method consists of
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four stages: vessel enhancement, centreline extraction, stenosis
measure computation, and volume visualisation. The centreline
extraction stage extends an existing technique [29] by deriving
a novel cost function using morphological top-hat by opening
to enhance the vessels. The resultant continuous centreline is
then used to compute a quantitative measure of stenosis based
on the vessel radius. Two volume visualisation techniques using
the resultant segmentation and measure – one based on MIP,
one based on DVR – are discussed and demonstrated using clin-
ically obtained datasets. The segmentation method is evaluated
using various synthetic and clinical datasets using three criteria:
efficiency, accuracy, and reproducibility.

2. Related work

Vessel enhancement and segmentation is a broad area of
research; a partial review of the field can be found in [19]. The
existing work can be loosely organised into five categories: dif-
ferential geometry, active contours, skeletonization, tracking,
and minimal path extraction methods.

Differential geometry approaches utilise the differentiabil-
ity of Euclidean space to derive measures which indicate the
‘vesselness’ of each pixel in an image. Sato et al. [28] and
Frangi et al. [13] both proposed multi-scale line filters based on
Gaussian differentials. Manniesing et al. [23] extended this to
control anisotropic diffusion filtering, which smooths inside the
vessels while maintaining sharp boundaries. Another approach
presented in [20] computes the degree of belonging to the
medial axis (centreline). This ‘medialness function’ is realised
by convolving the whole image with a kernel; the kernel is typ-
ically a multi-scale construct utilising second-order derivatives
(computed using the Hessian matrix). These methods tend to
be computationally expensive because they process the whole
dataset.

Active contour methods segment vascular structures by prop-
agating a surface or front. The surface is typically embedded
in a higher dimensional function such as the zero level-set.
Lorigo et al. [21] was one of the first to extend the classical
geodesic active contour model to 3D images for use segmenting
vascular structures. In this method a one-dimensional curve (cor-
responding to the tubular centreline) was evolved in 3D space.
Holtzman-Gazit et al. [15] formulated a level-set cost function
based on three terms: the zero crossings of the second-order
derivative, a minimal variance term to penalise lack of homo-
geneity inside and outside the evolving surface, and a geodesic
active surface term to regularise the functional. They showed
this approach was suitable for detecting thin vascular structures
with low contrast compared to their background. Yan and Kas-
sim [42] also presented a level-set based approach suitable for
segmenting thin vessels. Their method was founded on the prin-
ciple of capillary action—the attraction of fluid to the walls
of a bounding tube. This phenomena was used to derive an
adhesion energy term for propagating an active contour. In [9],
three separate approaches were brought together: firstly a multi-
scale Hessian-based line filter was used for enhancement, then
a level-set based approach (which implicitly handled change in
topology) was used to provide an initial segmentation, and finally

a geometric deformable model (triangulated mesh) driven by a
gradient energy cost function was evolved to provide the final
result.

Skeletonization converts a binary volume to a discrete cen-
treline – or skeleton – using a method such as distance-ordered
homotopic thinning [27]. Pruning and graph analysis techniques
must then be applied to transform the unordered discrete set of
points into an acyclic graph [14,10]. The challenge for skele-
tonization is to obtain a good initial segmentation. In [14] a
region-growing technique was used to produce the initial binary
volume. Such intensity-based techniques are susceptible to noise
and varying intensity within the vessel, so therefore in [8] an
additional gradient magnitude criteria was added to the tra-
ditional lower and upper thresholding strategy. Because these
methods only consider pixels comprising the vessel, they are rel-
atively fast; however, they operate in discrete pixel space which
can cause the centreline to exhibit stair-case artefacts. In [22] a
level-set based method was applied to produce the initial seg-
mentation, followed by a graph analysis method to order and
smooth the skeleton.

Similar to skeletonization, tracking methods only consider
the pixels in close proximity to the vessel centreline, and there-
fore tend to be relatively fast. Such methods are typically
iterative in nature; at each step an operator is applied to com-
pute a continuous point on the centreline and a direction to step.
Wink et al. [39] proposed a ‘centrelikelihood’ operator based on
the termination of a number of radially projected lines. Aylward
and Bullitt [5] used a Hessian-based metric to compute both
the centre point and step vector, as well as estimate the radius.
Tracking methods tend to be highly susceptible to noise: once
the computed centre point deviates from the actual, it is difficult
for the algorithm to recover.

Minimal path techniques frame the centreline extraction
problem in terms of cost function minimisation. In [37] a hybrid
tracking-path technique was presented. An initial estimate of
the centreline was found by tracking in a helical or ‘corkscrew’
motion. A cost function – based on a centrelikelihood measure
similar to that discussed above in [39]– was then iteratively min-
imised. Unfortunately, the authors indicate this method was not
robust in the presence of noise. Wink et al. [40] explored two
best-first minimal path search algorithms: Dijkstra’s algorithm
and A*. Dijkstra’s algorithm operates on a cost function and
fans out from the start position, accumulating the cost of each
possible discrete path until the end point is reached. The A* algo-
rithm is a generalization which uses a heuristic function h(�x) to
better steer the search process (a simple – but common – heuris-
tic function is the Euclidean distance between the current node
and the goal). If h(�x) = 0 then A* reduces to Dijkstra’s method.
The authors compared both unidirectional (expanding from start
to end) and bidirectional (expanding from both start and end)
searches. As discussed by Sethian [29], Dijkstra’s method (and
by generalization A*) is inconsistent with the underlying con-
tinuous problem: the resultant minimal path is bound to the
discrete grid. In contrast, Fast Marching approximates the con-
tinuous solution to the underlying partial differential equation
(see Fig. 1). For this reason, our proposed method builds upon
the Fast Marching minimal path extraction framework set out
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