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a b s t r a c t

Parametric imaging of the cerebral metabolic rate for glucose (CMRGlc) using [18F]-fluoro deoxyglucose
positron emission tomography is considered. Traditional imaging is hindered due to low signal-to-noise
ratios at individual voxels. We propose to minimize the total variation of the tracer uptake rates while
requiring good fit of traditional Patlak equations. This minimization guarantees spatial homogeneity
within brain regions and good distinction between brain regions. Brain phantom simulations demonstrate
significant improvement in quality of images by the proposed method as compared to Patlak images with
post-filtering using Gaussian or median filters.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

We focus on positron emission tomography (PET) parametric
imaging for estimating the cerebral metabolic rate of glucose (CMR-
Glc) using the [18F]-fluoro deoxyglucose (FDG) tracer. The ability to
derive accurate parameters depends upon the quality of data, the
quantification method and the numerical algorithm. In this study,
we refer to the time activity curve (TAC) from a given tissue loca-
tion as the output, tissue TAC or TTAC, and the TAC from the blood
pool (image-derived or arterial blood-sampled) as the input, plasma
TAC or PTAC. Most existing quantification methods perform well for
regions of interest (ROIs), but are not good for voxel level quantifica-
tion due to the high level of noise. These include graphical methods
[20,18], linear least squares, the weighted integration method [3],
generalized linear least squares [6,5], nonlinear least squares (NLS)
and weighted NLS.

All the algorithms listed above perform the quantification at
each voxel location separately; they do not consider the kinetic
similarities among neighboring voxels within functionally defined
regions. Thus, voxel-by-voxel variation in a functionally homoge-
neous region may be large because of noise in the data. But, by
incorporating the spatial constraint that parameters in a function-
ally homogeneous region should be similar, in any of the above
methods, the quality of the resulting parametric image for the CMR-
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Glc may be improved. Zhou et al. [25], for example, improved the
parametric image quality by ridge regression with constraints on
the rate constants. There, the estimation of parameters uses a linear
components decomposition of the kinetics in which each compo-
nent represents a functional kinetic curve generated by clustering
the TTACs, and the problem is solved voxel-by-voxel. Here we pro-
pose the use of a total variation (TV) penalty term which imposes
spatial consistency between neighboring voxels.

The total variation penalty was first introduced in the context of
image deblurring by Rudin et al. [22]. TV can significantly suppress
noise while recovering sharp edges because it does not penalize
discontinuities. It has received much theoretical research attention
and been utilized in many signal and image processing applications.
While it was introduced for PET image reconstruction by Jonsson
et al. [13], and Kisilev et al. [15], it has apparently not been applied
for parametric PET imaging. Instead of calculating the uptake rate
for each voxel by Patlak’s method, we propose to minimize the TV
of the uptake rate over the entire image while also maintaining a
good least squares fit for the Patlak equations at all voxels. Thus the
parameters of the whole image are spatially related by the TV and
solved simultaneously. The resultant parametric image is expected
to have spatial homogeneity over brain regions with similar kinet-
ics and distinct edges between brain regions that have different
kinetics. This is validated by phantom simulations.

In addition to proposing the new model with the TV penalty,
we also pay careful attention to the computational complexity of
the algorithm by taking advantage of implementations for large-
scale sparse matrix computations. In contrast to approximating
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the Hessian matrix, as is typical for quasi-Newton methods, our
algorithm explicitly and accurately calculates both gradient and
Hessian terms. The Hessian is efficiently recalculated at each iter-
ation because of its sparsity. The quasi-minimal residual (QMR)
method [7], is used to solve the resulting large-scale linear systems.
With this efficient implementation, the procedure described here
is computationally feasible.

The rest of the paper is organized as follows: the new algorithm
with TV penalty is introduced in Section 2, with relevant computa-
tional issues detailed in Appendix A. The experimental data sets are
described in Section 3 and results reported in Section 4. Issues rele-
vant to the proposed TV-Patlak method and computational aspects
are discussed in Section 5. Conclusions are presented in Section 6.

2. Methods

The Patlak plot has been developed for systems with irreversible
trapping [20]. Most often it is applied for the analysis of FDG. The
measured TTAC undergoes a transformation and is plotted against
a normalized time. It is given by the expression

CT(t)
CP(t)

≈ K

∫ t

0
CP(s)ds

CP(t)
+ V, (1)

where CT(t) is the measured TTAC (in counts/min/g) and CP is the
PTAC (in counts/min/ml), i.e. the FDG concentration in plasma. For
systems with irreversible compartments this plot yields a straight
line after sufficient equilibration time. For the FDG tracer, the slope
K represents the uptake rate which, together with lumped constant
(LC) and glucose concentration in plasma (Cpg) allows easy calcu-
lation of the CMRGlc = KCpg/LC (in mg/min/100 g). The intercept
V is given by V0 + vB, where V0 is the distribution volume of the
reversible compartment and vB is the fractional blood volume.

The linear relationship (1) can be rewritten as(∫ t

0

CP(s)ds

)
K + CP(t)V ≈ CT(t), (2)

and, assuming m dynamic frames over the period of equilibration,
its discretized version is(∫ tj

0

CP(s)ds

)
K + CP(tj)V ≈ CT(tj), j = 1, . . . , m. (3)

In matrix format,

A

(
K
V

)
≈ b, (4)

where A is a m-by-2 matrix,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ t1

0

CP(s)ds, CP(t1)∫ t2

0

CP(s)ds, CP(t2)

...
...∫ tm

0

CP(s)ds, CP(tm)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and vector b = (CT(t1), CT(t2), . . . , CT(tm))T . If we were to solve (4)
for each voxel independently we would obtain a parametric image
lacking spatial homogeneity and with low signal-to-noise ratio
(SNR). Image denoising techniques could then be applied as a sep-
arate task to improve the image quality. Instead, obtaining all voxel
parameters as a result of a global optimization algorithm with a
TV penalty for the entire image, the necessity for postprocessing
should be eliminated.

Limiting the discussion here to 2D images (although our appli-
cation of TV is 3D), we select the active voxels to be quantified by
the application of a brain mask, yielding a total of N voxels. Eq. (4)
holds with common matrix A dependent on CP(t) for each voxel i,
but with K, V and b replaced by K (i), V (i), and bi, respectively, where
bi is obtained from the TTAC for voxel i. Collecting the unknowns
of these N voxels in vectors of uptake rates and intercepts

x = (K (1), K (2), . . . , K (N))
T

and y = (V (1), V (2), . . . , V (N))
T
,

and requiring (4) in the least squares sense over all voxels, while
maintaining minimal TV of the uptake rate for the selected image
voxels, yields the global minimization problem

(TV-Patlak) : min ˚(x; y), (5)

˚(x; y) = ‖x‖TV,ˇ + ˛

N∑
i=1

‖Wi(A(xi, yi)
T − bi)‖2

2. (6)

Here the total variation norm is given by ‖x‖TV,ˇ =
∑N

i=1�i(x)

with �i(x) =
√

(xi − xir )2 + (xi − xib
)2 + ˇ2, and xir and xib

are the

values associated with voxels to the right and below voxel i. Theo-
retically the TV norm is ‖x‖TV,0, which is a seminorm on a space of
bounded variation [24]. The small constant ˇ is used to avoid the
numerical difficulty due to the lack of differentiability at the ori-
gin of �i for ˇ = 0. The diagonal weight matrix for voxel i is given
by

Wi = diag

(√
�tj

bije�tj

)
, j = 1, . . . , m, (7)

where �tj is the scan duration of the frame at time tj , � is the tracer’s
decay constant and bij is the value of the ith TTAC at frame j. This
weighting is consistent with using a simulation with variance

Var(CT(tj)) = Sc
CT(tj)e�tj

�tj
, (8)

[17]. Sc is a common scale factor that need not be made explicit here
because it is absorbed into the parameter ˛ in (6).

The objective function in (5) is convex, and can be solved using
a standard Newton-type algorithm [24], Chapter 8. To simplify the
expressions we introduce the vector z = [x; y].

Algorithm 1. Given initial guess z = [x; y] and tolerance � > 0

Repeat

1. Solve for �z in

∇2˚(z)�z = −∇˚(z). (9)

2. Stop if |∇˚T �z| ≤ �.
3. Line search: Choose step size s.
4. Update: z = z + s�z.

Further details on the calculation of gradient vector ∇˚(z) and
Hessian matrix ∇2˚(z) are provided in Appendix A. Some other
aspects of the algorithm, including discussion about constants ˛
and ˇ, here chosen to be 0.2 and 10−8, respectively, as well as other
approaches for the solution of the TV problem are discussed in
Section 5.

3. Experimental data

To validate the proposed parametric imaging method we
performed experiments with simulated data. The MRI-based high-
resolution Zubal head phantom is used to define the brain
structures [26]. Each voxel in the slice of 256 × 256 voxels is of
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