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a b s t r a c t

Background: When screening for breast cancer, the radiological interpretation of mammograms is a
difficult task, particularly when classifying precancerous growth such as microcalcifications (MCs). Bio-
physical modeling of benign vs. malignant growth of MCs in simulated mammographic backgrounds may
improve characterization of these structures
Methods: A mathematical model based on crystal growth rules for calcium oxide (benign) and hydro-
xyapatite (malignant) was used in conjunction with simulated mammographic backgrounds, which were
generated by fractional Brownian motion of varying roughness and quantified by the Hurst exponent to
mimic tissue of varying density. Simulated MC clusters were compared by fractal dimension, average
circularity of individual MCs, average number of MCs per cluster, and average cluster area.
Results: Benign and malignant clusters were distinguishable by average circularity, average number of
MCs per cluster, and average cluster area with po0.01 across all Hurst exponent values considered.
Clusters were distinguishable by fractal dimension with po0.05 in low Hurst exponent environments. As
the Hurst exponent increased (tissue density increased) benign and malignant MCs became indis-
tinguishable by fractal dimension.
Conclusions: The fractal dimension of MCs changes with breast tissue density, which suggests tissue
environment plays a role in regulating MC growth. Benign and malignant MCs are distinguishable in all
types of tissue by shape, size, and area, which is consistent with findings in the literature. These results
may help to better understand the effects of the tissue environment on tumor progression, and improve
classification of MCs in mammograms via computer-aided diagnosis.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Breast cancer is the most common cancer worldwide according to
the World Health Organization and the second leading cause of can-
cer-related death among women in the United States [1]. Cancer is
easiest to treat when it is found in early stages of development.
Mammograms are the most commonly used screening process for
breast cancer, and are widely recognized to play a vital role in diag-
nosing the disease. However, the radiological interpretation of mam-
mograms is a difficult task, especially since the mammographic ap-
pearance of normal tissue is highly variable. Modeling tumor and tu-
mor precursor growth in mammographic backgrounds can provide

insights into the structure of benign and malignant tumors, which
may improve radiological interpretation in the future [2].

Microcalcifications (MCs) are small, often clustered deposits of
calcium spread throughout breast tissue. Radiologists know that
MCs, which appear as small white spots in mammograms, can be
an indicator of cancer depending on their quantity, shape, and
dispersion pattern [3–7]. The proposition that this dispersion is
mathematical in nature and quantifiable through fractal mea-
surements—specifically that malignant tumor growth may de-
velop into fractal [8] patterns—is well accepted [9–13].

The fractal dimension, D, is a mathematical tool that has been
used extensively in all sciences. While standard geometry is lim-
ited to the study of Euclidean objects such as smooth curves, cir-
cles, and cubes, fractal geometry can be seen as a generalization of
Euclidean geometry. Objects exhibiting a geometrical structure
that cannot be described with tools such as area, perimeter, and
volume are naturally characterized via the fractal dimension.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cbm

Computers in Biology and Medicine

http://dx.doi.org/10.1016/j.compbiomed.2016.06.020
0010-4825/& 2016 Elsevier Ltd. All rights reserved.

n Correspondence to: CompuMAINE Laboratory 333 Neville Hall, University of
Maine Orono, Maine, 04469, USA.

E-mail address: andre.khalil@maine.edu (A. Khalil).
1 These authors contributed equally to this work.

Computers in Biology and Medicine 76 (2016) 7–13

www.sciencedirect.com/science/journal/00104825
www.elsevier.com/locate/cbm
http://dx.doi.org/10.1016/j.compbiomed.2016.06.020
http://dx.doi.org/10.1016/j.compbiomed.2016.06.020
http://dx.doi.org/10.1016/j.compbiomed.2016.06.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2016.06.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2016.06.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2016.06.020&domain=pdf
mailto:andre.khalil@maine.edu
http://dx.doi.org/10.1016/j.compbiomed.2016.06.020


Classical Euclidean objects have an integer fractal dimension
(D¼1, 2, 3 respectively), while most (tree-like or filamentary)
fractal objects have a non-integer fractal dimension [8].

Recently, using the 2D Wavelet-Transform Modulus Maxima
(WTMM) method [14–18] to detect MCs in mammographic breast
tissue, we characterized the fractal geometry of benign vs. malig-
nant MC clusters using two separate 2D projected mammographic
views of the same breast [13]. It was shown that 92% of malignant
breast lesions studied (23 out of 25 cases) had a fractal architecture,
while 88% of the benign lesions had a Euclidean (non-fractal) ar-
chitecture (30 out of 34 cases). Furthermore, using a Bayesian
analysis, it was shown with 95% credibility that the probability that
fractal breast lesions were malignant was between 74% and 98%,
and the probability that Euclidean breast lesions were benign was
between 76% and 96%. These results supported the notion that the
fractal structure of malignant tumors more likely were associated
with invasive behavior in the surrounding tissue, compared to the
non-invasive Euclidean structure of benign tumors [13].

In addition to the fractal dimension, we calculated the average
circularity of a cluster, number of distinct MCs making up a given
cluster, and total area of a MC cluster. Circularity of MCs is an ac-
cepted radiological criterion for discriminating between benign and
malignant MCs [4–7]. Willekens et al. suggested that malignant
clusters contain a greater number of distinct MCs than benign ones,
but did not find statistical significance of this in their data [7]. Dis-
criminating MCs via size was supported in 2D mammograms [19],
but inconclusive in 3D micro-CT imaging [7]. While clear advantages
of using 3D digital breast tomosynthesis (BT) over standard mam-
mography have been unambiguously demonstrated in terms of im-
proving the accuracy of detection as well as lowering the number of
false-positives by up to 50% [20–23], recent work showed that 2D
digital mammography outperformed BT for MC detection [24].

The main goal of this paper was to present a simple 2D model of
MC cluster growth in simulated mammographic backgrounds and, in
particular, to assess their fractal structure. The model proposed is in
accordance with most tumor growth models [25–28], as the bio-
physical principles behind benign and malignant MCs are the origin
of benign and malignant tumor growth, respectively. The malignant
MC simulated the growth of the necrotic tumor core, where calcium
ions and phospholipids of dying cells react [26,29]. The benign model
simulated the buildup of calcium secretions in cysts and ducts

[5,29,30]. Calcium oxide (CaO) crystals are associated exclusively
with benign MCs, while hydroxyapatite (HA) crystals are associated
with both benign and malignant MCs [29]. This paper examined the
respective influences of mammographic backgrounds and crystal
structure on MC growth by building strictly CaO or HA crystals in
simulated tissue. It was expected that CaO would yield benign MCs in
all simulated backgrounds, while HA would generate malignant MCs
only in some backgrounds due to the occasional association of HA
with benign calcifications [29]. HA growth should be more invasive
than CaO growth due to its association with malignant MCs.

A secondary goal of this paper was to present an alternative
way of generating breast tissue background. We did not attempt to
develop truly realistic variable mammogram backgrounds, which
are difficult and imperfect as correctly stated by Näppi et al. [27],
nor did we base our model on breast anatomy, as presented in
more recent work ([31] and the first eight references therein).
Rather we proposed a model based on observational mammo-
graphic measurements of the breast tissue background via multi-
fractal roughness analysis of density fluctuations [15]. Rough sur-
faces generated from 2D fractional Brownian motion provided
empirical resemblance to mammographic backgrounds [15]. Fatty
and dense breast tissues were simulated as needed by varying the
Hurst exponent H, which dictated the roughness of the fractional
Brownian process. Higher values of H (0.55oHo0.75), corre-
sponding to persistent, long-range correlations, were associated
with dense breast tissue, while lower values of H (0.25oHo0.45),
corresponding to anti-persistent correlations, were associated
with fatty breast tissue [15]. In this way we achieved quantifiably
realistic background tissue and observed quantifiably realistic
growth of MC clusters within breast tissue.

2. Proposed model

2.1. Background tissue generation

Rather than simulate background tissue using a recursive 2D
midpoint displacement algorithm, which can create artificial ridges
in otherwise smooth tissue [32], the background tissue was gener-
ated using fractional Brownian motion [14–16,33], which allowed
fine control over the tissue roughness and did not create ridges.

Fig. 1. Real (top) vs. generated (bottom) mammographic backgrounds at HE0.1, 0.3, 0.5, 0.7, and 0.9. The top images were obtained from the Digital Database for Screening
Mammography (DDSM) [55,56] and their roughness exponent, H, was estimated using the 2D WTMM method [13–18].
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