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a b s t r a c t

To investigate the effect of myocardial viscoeslasticity on heart function, this paper presents a finite
element model based on a hyper-viscoelastic model for the passive myocardium and Hill's three-element
model for the active contraction. The hyper-viscoelastic model considers the myocardium micro-
structure, while the active model is phenomenologically based on the combination of Hill's equation for
the steady tetanized contraction and the specific time–length–force property of the myocardial muscle.
To validate the finite element model, the end-diastole strains and the end-systole strain predicted by the
model are compared with the experimental values in the literature. It is found that the proposed model
not only can estimate well the pumping function of the heart, but also predicts the transverse shear
strains. The finite element model is also applied to analyze the influence of viscoelasticity on the residual
stresses in the myocardium.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Cardiovascular diseases, being the leading cause of death and
morbidity, have been studied from different aspects, such as di-
agnostic tests, surgical procedures, and medications. Both from
clinical practice and laboratory research it has been realized that
the mechanical performance of the ventricular muscle is one of
the most important factors that can influence the pumping func-
tion of the heart. For instance, the weak contractive ability can
cause a reduced ventricular ejection fraction, and the high stiffness
of the myocardium muscle can cause impaired filling [43]. Thus, to
better treat cardiovascular diseases, it is essential to investigate
the relation between the heart's function and its mechanical
properties. In general, stress and strain are two typical kinds of
parameters in the mechanical characterization of local myocardial
properties, and have been used as the vital determinants of many
cardiac physiological and pathophysiological functions [15].

To avoid the experimental limitations encountered in the direct
measurement of wall stresses in an intact ventricle [16], several
mathematical models for the passive left ventricle (LV) have been
presented to predict the stresses. Earlier mathematical models
based on the shell analysis theory paid attention to the overall
pressure–volume behavior of the LV. This kind of global model has
been explored extensively and used in clinical diagnosis [20]. With

the development of continuum mechanics, especially the finite
element method, mathematical models quantified in terms of local
deformation and stress have been proven to be able to reflect
some characteristics of the ventricular mechanics. Up to now, a
few local-property models, including the pole–zero model [24],
Fung-type models [30], and strain–energy function [4], have been
proposed in the finite elasticity framework to describe the het-
erogeneous, anisotropic properties of the LV. Recently, a structu-
rally based model of the passive myocardium, which takes into
account the morphology and structure of the myocardium, was
proposed by Holzapfel and Ogden [14]. Due to its simple invariant-
based formulation and its small set of material parameters, the
Holzapfel–Ogden model is particularly attractive in present prac-
tice [28]. In fact, as Fung mentioned, the myocardium is viscoe-
lastic. Although the viscoelastic property of the myocardium is
closely related to its physiological functions, especially
in situations involving a high heart rate, the relevant study is still
immature. To the author's knowledge, there are two viscoelastic
myocardial models, both constructed in the quasi-linear viscoe-
lasticity theory, that can be found in the literature [17,23].

To understand the active ventricular mechanics during systole,
models characterizing the contractile properties of the cardiac
muscle fibers are necessary. At present, several current models of
cardiac muscle contraction under different assumptions, e.g., the
time-varying elastance model, the modified Hill's model, and the
fully history-dependent model, can be found in the literature. The
time-varying elastance model describing the relation of the LV
pressure to the LV volume and a slack volume reflects a load-
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independent intrinsic contractility property of the LV [27]. The
modified Hill's model predicts the fiber stresses by modifying
shortening or lengthening of the sarcomere based on the force–
velocity relation [4]. The fully history-dependent model proposed
by [10] is a general deactivation model of cardiac contraction in
rapid length perturbation.

Based on active and passive models, various numerical tech-
niques, such as the finite element (FE) method, have been used to
estimate the deformation patterns of the LV under different cir-
cumstances. For instance, Vetter and McCulloch [40] developed an
anatomically detailed FE model to analyze the stress state during
passive filling of the left ventricle. Bovendeerd et al. [2] developed
an FE model in which the LV is approximated by a truncated
confocal ellipsoid, and studied the influence of the fiber orienta-
tion on the LV mechanics. Dorri et al. [5] constructed an FE model
for a representative human ventricle to investigate the role played
by the LV myocytes in cardiac function. Jiang et al. [19] used the
smoothed finite element method to guarantee the accuracy of the
analysis of the passive LV to be volumetric locking-free.

As an important functional indicator of various biological or-
gans, residual stresses/strains have been extensively investigated
from the aspects of experimental measurement and theoretical
analysis. Rachev and Greenwald [29] reviewed the experimental
methods for measuring the residual stresses in the artery wall, and
found that residual stresses can increase arterial compliance,
thereby making it more suitable to be a blood conduit. The re-
sidual strains in the myocardium were well illustrated by Omens
and Fung [25], who radially cut an equatorial slice of rat LV, and
defined the opening angle as a residual strain index. Summerour
et al. [37] followed Omens and Fung's line to study how the re-
modelings of collagen fibers and myocytes change the residual
strains in the ischemic ventricular myocardium. Costa et al. [4]
developed an experimental procedure to measure the transmural
distribution of the residual strains by a biplane radiographic
scanning of the coordinates of beads implanted in the heart wall.
To incorporate residual stresses into the constitutive modelling,
Nash and Hunter [24] introduced a growth tensor that can map
the load-free configuration to the stress-free configuration in the
analysis of the beating heart. Alternatively, Wang et al. [42] ap-
plied the virtual configuration approach proposed by Hoger [12] to
an FE analysis based on the Holzapfel–Ogden model.

In this paper, efforts are made to combine an orthotropic finite-
viscoelastic model for the passive myocardium developed by the
authors and a modified Hill's model for the active contraction to
analyze the deformations and stresses experienced by the LV over
the whole of the cardiac cycles. Special attention is paid to the
residual stresses and the end-diastolic strains, whose shear com-
ponents are hard to correctly predict by an elastic constitutive
model. In addition, to improve the stability and convergence of the
FE analysis, the consistent tangential moduli of the modified Hill
model are derived and implemented.

2. A hyper-viscoelastic model of the passive myocardium

The viscoelastic model of the passive myocardium used to
analyze the LV is briefly described in this section. For its detailed
derivation and application to a cylindrical LV model, cf. [31].

2.1. The decoupled free-energy function

From a morphological and microstructural standpoint, Hol-
zapfel and Ogden [14] have pointed out that the passive myo-
cardium tissue can be locally characterized as an orthotropic ma-
terial in the reference configuration. The orthotropy of the myo-
cardium is also illustrated by the experiments about the

myocardial microstructural architecture [22] and the slippage of
adjacent muscle layers along the cleavage planes [21]. Therefore,
there are three mutually orthogonal preferred material directions:
the fibre axis f0, the sheet axis s0, and the sheet normal axis n0, as
shown in Fig. 1. It is well known that the isotropic constitutive
relation merely depends on the deformation quantities, but the
anisotropic relation is simultaneously affected by both the de-
formation quantities and the intrinsical material structural quan-
tities. In general, the structural quantities can be represented by
the structural tensors defined by the tensor products of the pre-
ferred direction vectors. In orthotropicity, three irreducible struc-
tural tensors, L0, M0, and N0, can be expressed as

= ⊗ = ⊗ = ⊗ ( )L f f M s s N n n, , 10 0 0 0 0 0 0 0 0

The symbol ⊗ denotes the tensor product of two vectors.
To establish the thermodynamically viscoelastic constitutive

relation, the Helmholtz free energy function Ψ, which is the
thermodynamical counterpart of the elastic strain energy, has to
be suitably postulated for the specific material. In this paper, if we
only consider isothermal mechanical phenomena, then ortho-
tropicity leads to Ψ Ψ= ( … )C L M N Q Q, , , , , , q0 0 0 1 , which is a scalar-
valued function with + q4 tensor arguments. Among these, C is
the right Cauchy–Green strain tensor, and the internal variables

…Q Q, , q1 , defined in the reference configuration, represent the
dissipative mechanism associated with the viscoelasticity.

Based on the experimental evidence that the bulk deformation
of soft tissue is elastic, and the viscoelasticity mainly occurs in the
deviatoric deformation, the free energy function can be decoupled
in the physical sense as [13]
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where J is the Jacobian determinant of the deformation gradient, Ĉ
is the isochoric right Cauchy–Green tensor, Ψvol

0 is the initial free-
energy function describing the bulk elastic response, Ψiso

0 describes
the deviatoric elastic response, and Ξ is a given function of the
internal variables, which can be determined via the Clausius–Plank
inequality. The reason for the introduction of the specific viscoe-

lastic form, − ∑ ^
= C Q:i

n
i

1
2 1 , in the free-energy function is twofold.

First, it is a simple matter to find a function Ξ that makes Ψ satisfy
the second law of thermodynamics. Second, this kind of free en-
ergy function can be viewed as the finite deformation extension of
the linear Maxwell viscoelastic model. Through the Coleman–Noll
procedure, the second Piola–Kirchhoff stress and the free-energy
function have the relation
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Fig. 1. Schematic view of the fiber distributions across the LV.
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