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A B S T R A C T

A bio-economic model is developed that allows a detailed representation of optimal weed control decisions. It
implements an output damage control approach for German silage maize production, considering almost eighty
mechanical and herbicide based weed control options against over thirty weeds, working with detailed data on
weed abundance and yields for more than three hundred municipalities in the federal state of North-Rhine-
Westphalia. We apply the model to simulate economic optimal weed control over two growing periods under
current environmental standards and under the scenario of a glyphosate ban as recently discussed after gly-
phosate was classified as probably carcinogenic to humans. Considering different levels of weed pressure, we
find that adjustments in the intensity of mechanical pre-sowing strategies are an optimal response to a gly-
phosate ban, causing yield reductions of about 1%. In contrast, we find little evidence for a substitution towards
selective herbicides post-sowing. On average, the aggregated economic impacts of a glyphosate ban are small,
i.e. at about € 1–2/ha, but single farms may face higher losses at about € 10/ha.

1. Introduction

Reducing risks caused by pesticide application is a crucial compo-
nent of current agri-environmental policy debates in Europe. Different
measures are proposed to control pesticide use and the connected risks
for the environment and human health, resulting in more sustainable
agricultural systems (Lefebvre et al., 2015). The proposed measures
comprise banning specific pesticides (e.g. neonicotinoids and glypho-
sate; Gross, 2013; Schulte and Theuvsen, 2015) or introducing pesticide
taxes (Böcker and Finger, 2016; Finger et al., 2017). Especially the
renewed licensing or banning of the broad-spectrum herbicide gly-
phosate in the EU provoked heated discussions after the International
Agency for Research on Cancer classified glyphosate as “probably car-
cinogenic to humans” (Guyton et al., 2015). Ex-ante information on
health and environmental risks reduction and on the impacts on
farmer's income is needed to inform the debate on policy measures
targeting pesticides (Falconer, 1998). As substitution effects with other
herbicides are likely if specific products are targeted, potential changes
in farm management must be depicted in detail. In the debate on
banning glyphosate, however, there is a large uncertainty about those
effects (Schulte and Theuvsen, 2015; see also the position paper of
Steinmann et al., 2016). In this paper, we develop a tool for such de-
tailed impact assessment of environmental standards or other policy

measures affecting specific pesticides and apply it to assess a potential
ban of glyphosate.

In available assessments on pesticide application behaviour of
farmers, mainly econometric and optimisation modelling approaches or
combinations of both are applied (see Böcker and Finger, 2017).
Econometric applications are usually based on historical data, for in-
stance of pesticide applications, and are used to explain historical de-
velopments or to make recommendations on decision making. Opti-
misation and simulation models presume, for example, optimal decision
making based on more or less detailed production function approaches
combined with an economic objective such as profit maximisation.
They can hence be used for what-if-analyses even if observations are
missing (Grovermann et al., 2017). Existing approaches of the latter
group are, however, not detailed enough to assess measures addressing
individual pesticides, such as glyphosate in our application. For ex-
ample, Guan et al. (2005) work with a monetary aggregate over fun-
gicides, herbicides and other pesticides; but, higher total costs for
pesticide applications do not necessarily lead to a better weed treat-
ment and vice versa. Babcock et al. (1992) and Kuosmanen et al. (2006)
use the total amount of active substances (AS) of fungicides respectively
insecticides as an indicator for pesticide use in apple production re-
spectively cotton, neglecting any differences in risk between different
AS. Karagiannis and Tzouvelekas (2012) measure insecticide
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application in olive orchards based on litres of insecticides, and Jacquet
et al. (2011) model five different alternatives (intensive, recommended
by extension services, 2× integrated practices and organic farming
practices), both ignoring the diversity of existing AS.

In this paper, we extend the literature studying policy effects on pest
management by i) making use of the output damage function approach
(e.g. Karagiannis and Tzouvelekas, 2012), and ii) differentiating in
detail a larger set of pre-sowing and post-sowing weed control options
with regard to their yield impact. Specifically, we consider for each
strategy both costs and efficacy of controlling individual weeds.
Moreover, we develop a framework that is site-specific and allows in-
vestigating weed management over time and space. Our empirical
analysis focusses on silage maize, one of the most relevant crops in
Germany, where pest management mainly relies on herbicide applica-
tion (Julius Kühn-Institut, 2016). We apply the model to the Federal
State of North-Rhine-Westphalia (NRW), Germany, and account for the
spatial heterogeneity of weed pressure and yield potential at munici-
pality level. The model identifies economically optimal herbicide stra-
tegies in silage maize in each municipality at given pesticide and crop
prices as well as specifications and regulations of pesticide use. We
apply this model to study the impact of a ban of glyphosate on herbicide
use and/or mechanical weed control measures and related costs com-
pared to the current situation. At the moment, there are no alternative
chemical herbicides approved to replace glyphosate for pre-sowing
application (Kehlenbeck et al., 20151). Thus, mechanical weed control
is the only alternative which removes all potential risks from herbicides
before sowing. However, as claimed in some discussions on the topic,
selective herbicides could potentially be used at higher rates after
sowing, even increasing the overall health and environmental risks.

The remainder of this article is structured as follows: section 2
presents the damage control approach, the production function and its
parameterisation. The data used in the model is depicted in section 3.
The following section presents results, starting with some descriptive
results before testing several hypotheses. Afterwards, both the model
and the results are discussed and, finally, conclusions drawn.

2. Methodology

We develop a bio-economic weed control model for silage maize in
m regions, i.e. 377 silage maize producing municipalities in NRW. A
two-year cropping period is considered where maize is grown in each of
the two years t, a standard farming practise. The expected gross margin
E(π) in year t for different pre- (index b) and post-sowing (index h)
weed control strategies is defined as:

= − − − − −∗E y E P c b c b c h c y c(π ) [ · ( ) ( ) ( ) ( ) ( ) ],m t b h m t b h s f o, , , , , , (1)

where ym , t , b , h
∗ is the expected yield, E(P) is the expected output price

for maize, c(b) and c(h) are the pre- and post-sowing weed management
(and tillage) costs for a certain strategy and cs(b) are variable costs for
sowing depending on the pre-sowing strategy (the more expensive di-
rect precision drill is needed for some types of conservation tillage).
cf(y) are costs for fertiliser depending on the yield and co are other costs
(e.g. proportionate costs for rating and liming). Harvest costs are not
included because maize is sold ex field such that the buyer performs the
harvest, which is also reflected in lower output prices.

2.1. The Damage Control Approach

An output damage function is used to determine the expected yield
y* (Fox and Weersink, 1995; Guan et al., 2006, 2005; Hall and
Norgaard, 1973; Oude Lansink and Carpentier, 2001; Pannell, 1990;
Talpaz and Borosh, 1974). It depicts first the effect of the damage

control input(s) on the population of the damaging organism and from
there the resulting yield reduction from surviving damaging organisms
(Karagiannis and Tzouvelekas, 2012). We follow Guan et al. (2005) and
distinct in the production function y = G(x,D(h)) between productive
(x) and damage-controlling inputs (h) where D(h) is the multiplicative
damage controlling effect on the interval [0,1]. h is, for example, the
efficacy of a herbicide against a specific weed. If D(h) is equal to unity,
no losses due to pests, diseases or weeds occur. Besides chemical inputs,
also mechanical inputs such as hoeing or ploughing can be considered
as damage-controlling, which somewhat challenges a clear distinction
between h and x. Different proposals regarding the functional form of D
(h) have been made (see e.g. Carrasco-Tauber and Moffitt, 1992; Fox
and Weersink, 1995; Kuosmanen et al., 2006; Lichtenberg and
Zilberman, 1986). We follow Guan et al. (2005) and use the exponential
form because it is particularly suited to represent the underlying bio-
logical processes:

= − ≥− +D h e β β( ) 1 , , 0.β β z h( · ( ))2
0 10 1 (2)

This functional form implies decreasing marginal damage control in
input use, a reasonable assumption as, e.g., additional efforts in weed
control on an almost weed free field will not lead to much higher da-
mage control. Parameters β0 and β1 quantify the effects of inputs on
damage control; their estimation is explained in the next sections. The
decision variable in our model is z(h), the chosen level of damage
control.

2.2. Specification of the Damage Controlling Effect

We consider the 32 most important weeds for the case study region
in our analysis (see Table 1). Each plant protection strategy is char-
acterised by its weed specific damage control effect, i.e. a column
vector h with j 1 × 32 entries ranging between 0 and 1, allowing to
represent how specific herbicides and mechanical strategies differ in
their impact on individual weeds. Often, an herbicide strategy com-
prises several herbicide products. The resulting control success is ty-
pically not additive since the comprised herbicides usually have a si-
milar spectrum of action. More likely is the case that the maximum
suppression effect of any herbicide is crucial for the success. Also, we
add a multiplier ai to each weed wm,i to differentiate yield depression
effects by weed, depicted by the average abundance (ai) which mea-
sures the affected area share when that weed occurs (Table 1). Finally,
in order to quantify the site-specific damage controlling effect of spe-
cific herbicides, a weed-row vector w with size i 32 × 1 depicts for each
municipality m the probability that a weed occurs. The three vectors –
probability of weed occurrence w, affected share a, and damage control
for each weed h – define jointly the control success z for each herbicide
strategy j in the different municipalities m:

∑=z w a h· · .m j
i

m i i j i,

32

, ,
(3)

Eq. (3) presents the post-sowing weed controlling effects. Since we
use probabilities for the determination of the damage controlling effect,
the equation is dimensionless. In a similar manner, a vector vm,j can be
constructed that accounts for pre-sowing weed management effects
(denoted as bj,i):

∑=v w a b· · .m j
i

m i i j i,

32

, ,
(4)

2.3. Choice of Functional Form and Implementing the Damage Controlling
Effect

Inserting the damage control success expression from Eq. (3) in Eq.
(2) yields the following specification:

1 Note that glufosinate is no longer licensed in the EU according to the Commission
Implementing Regulation (EU) No. 365/2013.
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