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a b s t r a c t

Automatic detection, recognition and geometric characterization of bacteriophages in electron micro-
scopy images was the main objective of this work. A novel technique, combining phase congruency-
based image enhancement, Hough transform-, Radon transform- and open active contours with free
boundary conditions-based object detection was developed to detect and recognize the bacteriophages
associated with infection and lysis of cyanobacteria Aphanizomenon flos-aquae. A random forest classifier
designed to recognize phage capsids provided higher than 99% accuracy, while measurable phage tails
were detected and associated with a correct capsid with 81.35% accuracy. Automatically derived
morphometric measurements of phage capsids and tails exhibited lower variability than the ones
obtained manually. The technique allows performing precise and accurate quantitative (e.g. abundance
estimation) and qualitative (e.g. diversity and capsid size) measurements for studying the interactions
between host population and different phages that infect the same host.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Automatic detection and recognition of viruses and other
objects in microscopy images is still an active field of research
[1–3]. Much work in this area still remains in the form of
conventional microscope analysis, which is time consuming and
labor intensive, especially when objective quantitative measure-
ments need to be performed. For example, derivation of quantita-
tive abundance estimates requires recognizing and counting

objects in hundreds or even thousands of microscopy images.
According to Glaeser [4], automatic methods with accuracy higher
than 75% compared to a human expert are required. Majority of
approaches require human intervention via the choice of reference
images for template building [5], deciding on parameter values
determining particles of interest [5] or rejecting least confident
cases to avoid false positives [6]. Further improvements of auto-
mated object detection and recognition techniques are needed to
completely eliminate the need for human intervention. It is worth
noting that human experts sometimes also disagree [7].

Martin et al. [1] developed tools to detect spherical virus
particles based on analysis of pixel intensity levels inside a virus
particle and in the background. The technique developed by Yu
and Bajaj [8] to detect circular and rectangular particles in electron
micrographs is based on geometric features. Features, extracted in
frequency (Fourier) domain, were used by Matuszewski and Shark
[9] in the iterative Bayesian classifier to discriminate between four
types of viruses.
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Proenca et al. [2] developed a fully automatic technique to
detect virus particles in transmission electron microscopy images
and categorize found particles into three classes: Intact, Permeated
and Damaged. Extraction of regions of interest, selection of
candidates using morphological features, credibility test of the
candidates, based on features extracted from radial intensity
profiles, and an input image specific final validation in a three-
parameter space are the main steps of the algorithm. The algo-
rithm was tested using 26 images containing 139 particles and
identified 85% of particles correctly (with 15% of false negatives).

To detect cancerous cells in microscopy images, Vigneron et al.
[10] applied adaptive filtering and hypothesis testing. Location of
cells is formulated as a peak finding task in a view generated by
correlating an image of interest with a ring-shaped filter to match
circular objects. After applying the watershed transform to split
connected cells, the cell detection and counting task is formulated
as a hypothesis testing problem. According to the authors, the
technique detects �97% of the cells.

Several machine learning-based approaches have been devel-
oped for particle selection from electron microscopy images.
Ogura and Chikara [11] trained a multilayer perceptron and
achieved particle recognition accuracy of 98%. Sorzano et al. [12]
applied an ensemble of Naive Bayes classifiers trained using a set
of rotationally invariant features. To distinguish between seven
species of Eimeria, a protozoan parasite of domestic fowl, Castanon
et al. [13] trained a Gaussian classifier using 13 features reflecting
multiscale curvature, geometry and texture of oocysts of the
species extracted from microscopy images. An overall correct
classification accuracy of 87.75% was achieved.

Detection and segmentation of cell nuclei is a widely studied
task, which closely resembles the task of our study. Active
contours [14] and gradient flow tracking [15] are two examples
of techniques developed to achieve robust localization and seg-
mentation of cell nuclei.

Segmentation and classification of nanoparticles is a task
similar to cell segmentation and categorization. The technique
developed by Park et al. [16] focuses on automated morphology
analysis of partially overlapping nano-particles in electron micro-
scopy images. Ultimate erosion for overlapping convex sets,
extraction and association of contour evidences, and expectation
maximization-based contour evolution with multiple reference
shapes are the main steps of the technique. A contour is modeled
as a uniform periodic B-spline curve.

Aquatic bacteriophages (viruses that infect bacteria) are now
recognized to be the most abundant biological entities in the
global ocean with estimated total counts of between 104 and 108

viruses in 1 ml of water sample [17]. Viruses are the major source
of bacterial mortality and significantly contribute to the control of
host population dynamics, and, consequently, to overall function-
ing of the aquatic ecosystem [18,19]. Viruses are also extremely
diverse with morphologies ranging from a variety of polyhedral
tailed phages to long filamentous, spindle or lemon-shaped
viruses [20]. The vast majority of all observed viruses (sim96%)
belong to order Caudovirales [21,20] and are divided into three
families (Myoviridae, Siphoviridae and Podoviridae) according to
their relative proportion of the capsid and tail structures [22]. It
has been suggested that the manner and degree to which virus
affects host population dynamics is intrinsically related to virus
morphology and size [23,24]. For example, by using viruses,
belonging to the three different above mentioned families, capable
to infect the same host, Holmfeldt et al. [25] have found that the
success of host infection by a virus varied between distinct
morphotypes. Bacteriophage morphology can also reflect virus life
cycle and host range. It has been experimentally demonstrated
that members of Podoviridae are extremely host specific com-
pared to viruses that belong to the family Myoviridae and are

capable of infecting many different host strains [26,27]. However,
despite differences in host range, both podo- and myo-viruses
more often exhibit a lytic infection cycle compared to the mem-
bers of Siphoviridae that frequently turn into lysogenic interac-
tions with its host [23]. In addition, the size of the virus is also an
important parameter of virus–host interactions, since it strongly
determines virus progeny (burst size) formation within the cell
[28]. For example, a larger virus capsid diameter results in a
smaller burst size, which in turn requires higher infection and host
mortality rates to maintain the abundance of virus population
similar to that of smaller capsid size viruses. Therefore, such
differences between morphologically distinct phages that infect
the same host have significant implications for the ecology of
virus–host interactions. On the other hand, clonal composition of
host population can also result in production of different morpho-
logical types of viruses as it has been shown for some cyanobac-
teria [29]. Therefore, to better understand the interactions
between host population and different phages that infect the
same host, precise and accurate tools for quantitative (e.g. abun-
dance estimation) and qualitative (e.g. diversity and capsid size)
measurements are necessary.

The main purpose of this work is automated detection and
recognition of specific types of co-occurring bacteriophages in
electron microscopy images. Quantitative characterization of
detected bacteriophages is another important task of this study.
For modeling purposes, we use cyanobacteria Aphanizomenon flos-
aquae and two different A. flos-aquae infecting bacteriophages.
Cyanobacteria A. flos-aquae are globally distributed species in
temperate aquatic ecosystems that regularly produce harmful
blooms. Bacteriophages was recently shown to play an important
role in controlling the structure and dynamics of A. flos-aquae
population [30], suggesting that they can significantly contribute
to the development and decline of cyanobacterial blooms. Thus
the study of a A. flos-aquae-bacteriophages system has not only
fundamental (e.g. study of evolution of virus–host interactions)
but also considerable ecological importance. The technique com-
bines phase congruency-based image preprocessing [31], detec-
tion of circular objects using the Hough transform, Radon
transform- and open active contours with free boundary
conditions-based detection of linear objects, classification of
objects, and RF-based quality assessment of virus tails allowing
to associate a phage tail with a relevant capsid.

2. Data

For the experiments we used a mixture of three bacteriophages
(Figs. 1 and 2): bacteriophage Vb-AphaS-CL131 (hereafter virus 1;
Fig. 1a), bacteriophage T4 (hereafter virus 2; Fig. 1b) and bacter-
iophage Vb-AphaM-CL132 (hereafter virus 3; Fig. 1c), all represent-
ing morphologically different types of tailed phages belonging to
the order Caudovirales (Table 1). Both bacteriophages Vb-AphaS-
CL131 and Vb-AphaM-CL132 are associated with infection and lysis
of cyanobacteria A. flos-aquae, and can be found together in the
purified lysates of A. flos-aquae. These bacteriophages represent
different morphological families of viruses (Table 1) that were
shown to have the different infection strategies. Bacteriophage T4
was added to the A. flos-aquae lysate containing Vb-AphaS-CL131
and Vb-AphaM-CL132 bacteriophages as a control bacteriophage to
ensure accurate and precise measurements of A. flos-aquae viruses.
Bacteriophage T4 has been studied extensively by using a variety
of techniques, and the structures of the head and tail are well
morphologically characterized [32], making T4 a reference bacter-
iophage in electron microscopy studies.

Morphological and structural characteristics of all three bacter-
iophages used in this study are given in Table 1. Bacteriophage Vb-
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