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Government agencies in the United States eradicated 10.3 million cannabis plants in 2010. Most (94%) of these
plants were outdoor-grown, and 46% of those were discovered on federal lands, primarily on national forests
in California, Oregon, and Washington. We developed models that reveal how drug markets, policies, and
environmental conditions affect grow siting decisions. The models were built on a rational choice theoretical
structure, and utilized data describing 2322 cannabis grow locations (2004–2012) and 9324 absence locations
in the states' national forests. Predictor variables included cannabis market prices, law enforcement density,
and socioeconomic, demographic, and environmental variables. We also used the models to construct regional
maps of grow site likelihood. Significant predictors included marijuana street price and variables associated
with grow site productivity (e.g., elevation and proximity to water), production costs, and risk of discovery.
Overall, the pattern of grow site establishment on national forests is consistent with rational choice theory. In
particular, growers consider cannabis prices and law enforcement when selecting sites. Ongoing adjustments
in state cannabis laws could affect cultivation decisions on national forests. Any changes in cannabis policies
can be reflected in our models to allow agencies to redirect interdiction resources and potentially increase
discovery success.
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1. Introduction

In the United States, illegal cannabis cultivation on public lands is a
major problem for land management agencies (Bouchard, 2007). In
particular, national forests of the United States have experienced rising
rates of illegal cultivation. The US Department of Justice's National Drug
Intelligence Center (2011) reported that the rate of outdoor-grown can-
nabis seizures nationwide increased 150% from 2005 to 2010, fueled by
apparent demand growth andprofit-earning opportunities for domestic
producers; of all outdoor-grown plants seized in 2010, 44% came from
federal lands, primarily national forests. Large-scale producers may be
motivated by the perception that domestic cultivation is less risky
(i.e., in terms of detection by lawenforcement) than importing cannabis
across national borders (Barratt et al., 2012; Bouchard, 2007). Domestic
producers also face low average costs, at $75 per pound, and can sell
their output for up to $7000 per pound. Even in states such as Colorado

and Oregon where cannabis possession, distribution, and production
were recently legalized, illicit cultivation on national forests and other
federal lands is likely to persist, either to supply states where cannabis
is still prohibited (Roberts, 2014) or to avoid the taxes and regulations
imposed on licensed growers.

Illegal grow operations endanger those who visit or work on
national forests. They also cause extensive ecological damage and
require costly clean-up (Liddick, 2010; Tynon and Chavez, 2006).
Unfortunately, finding cannabis grow sites (“grows”) is difficult given
available enforcement resources, which must be applied to extensive
areas of public land that may be suitable for grow operations (Chavez
and Tynon, 2000). Therefore, law enforcement agencies need tools
that can help them allocate scarce resources to improve rates of
interdiction success. For example, they might employ mathematical
models to predict where certain crimes – in this case, illegal cannabis
cultivation – will occur in the future, a practice known as prospective
hotspotting. Hotspotting techniques based on spatial patterns of histor-
ical crime occurrence data are widely used by law enforcement, but
such techniques essentially assume that new crimes occur near where
they happened previously (Caplan et al., 2011). This is also true of
hotspotting methods (e.g., Bowers et al., 2004; Johnson and Bowers,
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2004; Ratcliffe, 2004; Rossmo, 1999) that emphasize temporal as well
as spatial patterns of past criminal activity. Recently proposed
approaches (e.g., risk terrain modeling) supplement historical crime
occurrence data with additional data on crime-related variables to
better identify hotspots (Caplan et al., 2011; Wang et al., 2013).
Nevertheless, these new methods are primarily predictive in purpose,
and not inferential in the sense of uncovering and understanding the
roles of important drivers of crime. With respect to illegal cannabis
cultivation, we believe that a more effective approach could be
developed not just from knowledge of recent grow locations, but also
from an understanding of grower decisions. Models structured in this
way are potentially more capable of handling shifts in the decision-
making environment, for example due to spatial and temporal changes
in the risks and rewards of a crime. They have the additional advantage
of providing inference about the importance of various factors as
aspects of an underlying theoretical framework of a crime.

Illegal cultivation on national forests can be explained using rational
choice theory (Becker, 1968; Cornish and Clarke, 1986, 1987). Cannabis
growers, like other criminal offenders, are rational agents (e.g., Akers,
1990), and they choose locations (or victims) based on the situational
status of those locations (or victims). Rational choice theory befits the
analysis of criminal events, in no small part because it adopts the pre-
mise that situational (i.e., environment-describing) variables can help
to explain these events (Hirschi, 1986; Weisburd and Piquero, 2008).
Evidence suggests that prospective criminals often behave as if they
are rational (Nagin and Paternoster, 1993), especially with respect to
crimes involving monetary gains, even when emotions enter into their
decision-making (Paternoster and Simpson, 1996; van Gelder and de
Vries, 2014). Furthermore, drug trafficking organizations (DTOs) are
thought to dominate cannabis production inWest Coast national forests
(Weisheit, 2011), and the decision-making by these sorts of criminal
groups would seem to be well represented by a rational choice model
that defines the expected costs and benefits of crime commission
(e.g., Desroches, 2005).

While rational choice theory provides an overall construct of crimi-
nal decision-making, other theories from criminology help to explain
how costs and benefits come together to determine decision outcomes.
For instance, routine activities theory (Cohen and Felson, 1979) asserts
that many crimes occur due to the convergence of three conditions: a
likely offender (someone who is able and motivated to commit a
crime); a suitable target (depending on the type of crime, a person or lo-
cation perceived to be vulnerable or conducive to the crime); and the
absence of a capable guardian (a person or thing that – as opposed to
an incapable guardian – serves as a deterrent to the crime). Thus, a
key aspect of the environment that a potential offender faces is the
presence of factors that make the offender more or less visible to
capable guardians (e.g., Jeffery, 1977), including law enforcement.
Because they influence how the offender perceives the likelihood of
being caught and suffering consequences, visibility factors can affect
the offender's decisions significantly. These effects can be complex,
non-linear, and bi-directional, as illustrated by the example of a
cannabis grower selecting a new cultivation site: site preparation
often requires large quantities of supplies and equipment (e.g., PVC
tubing for irrigation, tools and herbicides for removing native
vegetation), so locations close to a road would logically be appealing,
yet locations close to a road are also more likely to be discovered by
law enforcement or forest visitors.

The environment can also include factors that affect the opportunity
costs of being caught, including penalties for being caught (sentences or
fines) and lost wages or work opportunities related to imprisonment
(e.g., Aaltonen et al., 2013; Burdett et al., 2003; Gould et al., 2002), as
well as the opportunity cost of time needed to carry out the criminal
activity. The environment might further be described by higher-level
socioeconomic factors governing the perceived rewards from crime
commission. For example, the prices that can be obtained from the
sale of illicit drugs are affected by aggregate demand for and supply of

such drugs, which respond to public policies directed at both producers
and consumers. Finally, the reward gained by a producer physically
varies across space. Ultimately, because all of these environmental
factors vary over space and time, the incentives for grow establishment
also vary over these dimensions.

These concepts can be used to model illegal cannabis cultivation
activities on national forests in the United States, by connecting grower
decisions statistically to factors affecting cannabis production risks and
rewards. Although our focus is illegal cannabis cultivation, this
represents just one example from a class of problems where the factors
that determine the spatial pattern of a phenomenon are uncertain and
resistant to simple inference. Other examples might be predicting
locations where an invasive species is likely to become established or
identifying hotspots of illegal wildlife poaching or plant harvesting. In
such cases, human activities (e.g., travel for recreation or commerce)
often strongly influence the observed pattern (Gallardo et al., 2015),
but the nature and degree of that influence may be difficult to ascertain
because the data available to describe the pattern (e.g., reports of crime
occurrence in the field) may be incomplete or otherwise biased. There-
fore, another important objective of our work was to outline a concep-
tual approach that could be applied to this general class of problems.

2. Methods

Predicting cannabis grow locations resembles how ecologists model
the geographic distributions of species based on occurrence data. The
fundamental principle behind species distributionmodels is that spatial
variation in species occurrence can be described using environmental
factors (e.g., climate or topography) that also vary across the occupied
space (Elith and Leathwick, 2009). Historically, ecologists have
employed regressionmethods (e.g., generalized linearmodels, especial-
ly logistic regression) to predict species distributions and to explore
ecological relationships between the underlying drivers (Austin, 2007;
Elith and Leathwick, 2009). In recent years, regression-based
approaches have increasingly been supplanted by methods adapted
from machine learning and data-mining literature, including decision
trees and decision-tree ensembles (e.g., boosted regression trees,
random forests), artificial neural networks, maximum entropy models,
and genetic algorithms (Elith et al., 2006). While these methods have
documented advantages in terms of predictive success in some
empirical applications, they are complex and often opaque (Elith and
Leathwick, 2009), limiting their suitability for examining interactions
among explanatory variables, including endogeneity. In particular, we
were concerned about the potentially endogenous relationship
between grow location and cannabis price: higher pricemay encourage
more grows, butmore growsmay reduce price. Consequently, we chose
to use regression methods (i.e., logit and probit regression) in our
analyses that allowed us to address the potential endogeneity straight-
forwardly. Furthermore, logit and probit regression are commonly used
in analyses involving rational choice, as detailed below.

2.1. Theoretical Framework

Becker (1968) provided a formal exposition of rational choice theory
in terms of expected utility:

EU Cð Þ ¼ 1−π zð Þ½ �u Bð Þ−π zð Þu Að Þ−c Cð Þ; ð1Þ

where EU denotes expected utility, C denotes a criminal action, π is the
perceived (by the criminal) probability of suffering a criminal sanction,
z is a vector of exogenous variables affecting the probability, u(B) is the
utility gain from committing the crime, u(A) is the utility loss frombeing
caught, and c(C) are the direct costs of committing the crime. The vector
z may also include variables describing the presence of police or other
capable guardians. The benefits of committing a crime depend on the
size of the reward. In the case of a crime such as cannabis cultivation
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