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Adaptive management incorporates learning-by-doing (LBD) in order to capture learning and knowledge genera-
tion processes, crucial for sustainable resource use in the presence of uncertainty and environmental change. By
contrast, an optimization approach tomanagement identifies themost efficient exploitation strategy by postulating
an absolute understanding of the resourcedynamics and its inherent uncertainties. Here,we study thepotential and
limitations of LBD in achieving optimal management by undertaking an analysis using a simple growthmodel as a
benchmark for evaluating the performance of an agent equipped with a 'state-of-the-art' learning algorithm. The
agent possesses no a priori knowledge about the resource dynamics, and learnsmanagement solely by resource in-
teraction.We show that for a logistic growth function the agent can achieve 90% efficiency compared to the optimal
control solution, whereas when a threshold (tipping point) is introduced, efficiency drops to 65%. Thus, our study
supports the effectiveness of the LBD approach. However, when a threshold is introduced efficiency decreases as
experimentation may cause resource collapse. Further, the study proposes that: an appropriate amount of experi-
mentation, high valuation of future stocks (discounting) and, a modest rate of adapting to new knowledge, will
likely enhance the effectiveness of LBD as a management strategy.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Exploiting a renewable resource sustainably involves two funda-
mental constraints: first, the difficulties of agreeing on appropriate
actions (Dietz et al., 2003; Hardin, 1968) and second, the limitations in
understanding the dynamics of the resource system (Allen et al., 2011;
Armitage et al., 2008). This paper will focus on the latter constraint.

1.1. Adaptive Resource Management—The Learning Challenge

Ecosystems are complex adaptive systems (Levin et al., 2012) and
thus will always be subject to uncertainty, unknown and unknowable
phenomena (Duit and Galaz, 2008; Folke et al., 2005; Levin, 2003).
These phenomena include, among others: inherent stochastic events,
non-convex interactions, scale dependent dynamics and incomplete
information (Crépin et al., 2012; Norberg and Cumming, 2008). Using
optimal management (see e.g. Clark, 2010) and predefined models to
describe complex resource dynamics with the purpose of deriving an
optimal path of action for management or exploitation will always
ignore parts of these phenomena andmay give a false sense of accuracy
in the derived solutions (Allen et al., 2011; Holling and Meffe, 1996;
Walters and Hilborn, 1978). The shortcomings of optimization-based

‘command and control’ management led to the development of adap-
tive management (Allen et al., 2011; Holling, 1978; Holling and Meffe,
1996). This approach tries to navigate the system by more or less
targeted trial and error and by building up a reservoir of knowledge
through a continuous learning process (Arrow, 1962; Kolb, 1984;
Walters and Holling, 1990). However, adaptive management also
faces constraints such as: limitations in building an understanding of
the resource dynamics based on iterative and locally based experiences,
the cost of experimenting in order to learn about the system and, recog-
nizing and responding to knowledge of changing conditions within the
system (Olsson and Folke, 2001).

In this paper we study adaptive management using ‘optimal control
management’ as a benchmark, to explore the limits of learning-by-
doing (LBD) when managing a renewable resource exhibiting two
levels of non-linear dynamics.

1.2. Thresholds Dynamics

A particularly ‘wicked problem’ (Jentoft and Chuenpagdee, 2009) in
natural resource management is the fact that many ecosystems are sub-
ject to threshold dynamics, so called critical transitions or regime shifts
(Scheffer, 2009). Threshold effects entail abrupt changes in the dynamics
of an ecosystem, where the effect of passing a threshold (or tipping
point) switches the dominant feedbacks within the system and can
change a particular resource's provisioning rate. Recovery of the resource
is then constrained by the degree of lock-in to the new system domain
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i.e., the hysteresis effect (Scheffer et al., 2001). Thresholdsmay be seen as
undesirable properties, if the change in provisioning from the system has
a significantly negative impact on human well-being (Rockström et al.,
2009; Stern, 2007). Moreover, research suggests that regime shifts in
human-nature systems are likely to increase as human pressure on the
planet accrues (Schlüter et al., 2012).

Depending on the severity of lock-in, thresholds provide a particu-
larly difficult challenge for LBD approaches, should a threshold be
crossed while experimenting to learn the dynamics of the system.

Recent research is focused on anticipating regime shifts (Biggs et al.,
2009; Scheffer et al., 2012), optimal management of systems with
regime shifts (Brock and Starrett, 2003; Horan et al., 2011; Polasky
et al., 2011), or studying adaptive management in relation to threshold
dynamics, using eithermulti-agent basedmodels for studying emergent
properties (Janssen and Carpenter, 1999; Janssen et al., 2000) or labora-
tory experiments with human subjects (Lindahl et al., 2012). However,
the role of threshold dynamics for the LBD processes itself, is in dire
need of further exploration.

1.3. Introducing Reinforcement Learning and Artificial Intelligence

Decision theories are strongly connected to the learning process,
such as the expected utility theory from economics (Neumann and
Morgenstern, 1947) and prospect theory from psychology (Kahneman
and Tversky, 1979). Reinforcement learning (RL) (Sutton and Barto,
1998) is a computational approach to problems concerning goal-
directed learning. It is defined as an agent's ability to learn a behavior
through trial-and-error by interacting with a dynamic environment
(Kaelbling et al., 1996), and allows for incorporating different decision
theories. Due to its compatibility with adaptive management, RL is
perceived as a latent approach for dealing with natural resource man-
agement problems (Fonnesbeck, 2005). RL attracts researchers from
diverse disciplines such as psychology, control theory, artificial intelli-
gence, and neuroscience (Sutton and Barto, 1998). Notably, Kable and
Glimcher (2009) and Niv and Montague (2008) show that it can reveal
the neurobiological basis for learning subjective values, which ultimately
underlies all decision-making.

RL and neural networks are situated between artificial intelligence
and conventional engineering, and “… extend ideas from optimal
control theory and stochastic approximation to address the broader
and more ambitious goals of artificial intelligence” (Sutton and Barto,
1998). Control theory has contributed to a profound understanding of
why complexity in natural systems creates trade-offs between robust-
ness and resilience, and fragility at different scales (Anderies et al.,
2007; Csete and Doyle, 2002; Folke, 2006; Levin and Lubchenco,
2008). Furthermore, it provides awell-foundedmathematical represen-
tation of ‘feedback’ as a process. The RL approach shifts the main focus
from control to learning, and accentuates highly theoretical but essen-
tial parts of the LBDprocess—moving it closer to howhumanshandle in-
formation. By combining the component ideas of temporal difference
learning (from RL) and neural networks, we incorporate features such
as hindsight, planning horizon, exploration vs. exploitation and general-
ization (further described in Section 2.2).

Learning is a principal aspect of adaptive management in helping
to deal with uncertainty and change (Armitage et al., 2008). Social
learning has been extensively studied, but the learning process at
an individual level has been scarcely addressed in resourcemanagement
(see e.g. Fazey et al. (2005), Garavito-Bermúdez et al. (in press) and
Marschke and Sinclair (2009) for empirical studies). In addition, litera-
ture on how the human brain accumulates knowledge through
interactingwith its environment is not explicitly found in resourceman-
agement. However, inspiration can be gained from the relatively new
field of neuroeconomics, which tries to understand the neurological
basis of how the human reward system affects behavior (Rangel et al.,
2008).

1.4. Research Questions

In this study we undertake an analysis letting an AI agent learn to
manage a renewable resource with two levels of complexity (with or
without threshold dynamics). By using thismethodwe can parameterize
the LBD process and its related components, and thus we are able to
evaluate key learning parameters in relation to optimal control perfor-
mance. Hence, for studying the limitations and possibilities of LBD for
sustainablemanagement of renewable resources,we probe the following
questions;

• Howdoes the LBD process respond to different levels of complexity of
a renewable resource?

• How do key learning parameters of the LBD process—such as mental
model update rate, discounting, hindsight, and experimentation—
influence management outcomes?

• Is there a discrepancy between the optimal values of the key learning
parameters, depending on the level of complexity of the resource?

The key learning processes are selected in accordance with learning
literature on LBD (e.g. Kolb, 1984), within natural resource manage-
ment literature (e.g. Armitage et al., 2008; Duit and Galaz, 2008;
Ostrom, 1990), and the outline of the RL method. Obviously, learning
is amuch richer phenomenon thanwe are able to depict here. However,
our aim is to analyze the core of the LBD-process,which confines learning
in this study. A similar work, using RL, is conspicuously lacking and we
aim to provide useful insights to the discourse on the role of learning
and decision-making in natural resource management.

2. The Model

To make the model less abstract we can envision the setting to be a
fisherymanagement problem,where the agent represents a fishing unit
(such as a fisherman or an organization with full ownership rights
having the ability to exclude other actors, i.e., not a common pool
situation), that interacts with a fish stock (where the fish is assessed
as a single-species unit). For such situations, ample theory has been
developed (Clark, 2010). A list of terminology is provided in Table 1.
No a priori understanding of the resource system was given to, nor
built into, the agent in order to study the complete learning process
(which would theoretically be the case when exploring a new system).
Instead, for each fishing event, the agent could set its harvest effort,
observe the harvest, and learn from this experience. The agent was
analyzed interacting with either a resource characterized by a logistic
growth rate, or a similar resource but with a threshold in its regenera-
tion rate. The two scenarios will further be referred to as the logistic
function and the threshold function, to state which dynamics are in focus.

2.1. Resource Dynamics and Agent's Maximization Problem

First, let us describe the agent's goal function and the two resource
functions. The goal of the agent was to find the effort resulting in the
maximum economic yield (MEY) over time. The agent acted as a
price-taker in a competitive market, and thus lacked market power.

Table 1
Terminology and selected parameters used interchangeably throughout
the paper.

Model term Fishery term

Agent Fisherman/fishing unita

Action (a) Effort/harvest effort
State (s) Biomass/stock
Reward (r) Net income of harvest
Time step (t) Fishing event

a A centrally organized unit of fishermen.
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