Computers in Biology and Medicine 48 (2014) 28-41

Computers in Biology and Medicine

journal homepage: www.elsevier.com/locate/cbm

. . . . Ai o mee

Contents lists available at ScienceDirect :

Computers in Biology
and Medicine

=z N = |
B4

Automating fault tolerance in high-performance computational

@ CrossMark

biological jobs using multi-agent approaches

Blesson Varghese **, Gerard McKee b Vassil Alexandrov €

@ School of Computer Science, University of St. Andrews, UK

b Faculty of Computing and IT, Baze University, Nigeria
€ Barcelona Supercomputing Centre, Spain

ARTICLE INFO

Article history:
Received 9 December 2013
Accepted 12 February 2014

Keywords:

High-performance computing
Fault tolerance

Biological jobs

Multi-agents

Seamless execution
Checkpoint

ABSTRACT

Background: Large-scale biological jobs on high-performance computing systems require manual inter-
vention if one or more computing cores on which they execute fail. This places not only a cost on the
maintenance of the job, but also a cost on the time taken for reinstating the job and the risk of losing data
and execution accomplished by the job before it failed. Approaches which can proactively detect
computing core failures and take action to relocate the computing core's job onto reliable cores can make
a significant step towards automating fault tolerance.

Method: This paper describes an experimental investigation into the use of multi-agent approaches
for fault tolerance. Two approaches are studied, the first at the job level and the second at the core level.
The approaches are investigated for single core failure scenarios that can occur in the execution of
parallel reduction algorithms on computer clusters. A third approach is proposed that incorporates
multi-agent technology both at the job and core level. Experiments are pursued in the context of genome
searching, a popular computational biology application.

Result: The key conclusion is that the approaches proposed are feasible for automating fault tolerance
in high-performance computing systems with minimal human intervention. In a typical experiment in
which the fault tolerance is studied, centralised and decentralised checkpointing approaches on an
average add 90% to the actual time for executing the job. On the other hand, in the same experiment the

multi-agent approaches add only 10% to the overall execution time.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The scale of resources and computations required for executing
large-scale biological jobs are significantly increasing [1,2]. With
this increase the resultant number of failures while running these
jobs will also increase and the time between failures will decrease
[3-5]. It is not desirable to have to restart a job from the beginning
if it has been executing for hours or days or months [6]. A key
challenge in maintaining the seamless (or near seamless) execu-
tion of such jobs in the event of failures is addressed under
research in fault tolerance [7-10].

Many jobs rely on fault tolerant approaches that are implemen-
ted in the middleware supporting the job (for example [6,11-13]).
The conventional fault tolerant mechanism supported by the

* Corresponding author.

E-mail addresses: varghese@st-andrews.ac.uk (B. Varghese),
gerard.mckee@bazeuniversity.edu.ng (G. McKee),
vassil.alexandrov@bsc.es (V. Alexandrov).

URL: http://www.blessonv.com (B. Varghese).

http://dx.doi.org/10.1016/j.compbiomed.2014.02.005
0010-4825 © 2014 Elsevier Ltd. All rights reserved.

middleware is checkpointing [14-17], which involves the periodic
recording of intermediate states of execution of a job to which
execution can be returned if a fault occurs. Such traditional fault
tolerant mechanisms, however, are challenged by drawbacks such
as single point failures [18], lack of scalability [19] and communica-
tion overheads [20], which pose constraints in achieving efficient
fault tolerance when applied to high-performance computing
systems. Moreover, many of the traditional fault tolerant mechan-
isms are manual methods and require human administrator inter-
vention for isolating recurring faults. This will place a cost on the
time required for maintenance.

Self-managing or automated fault tolerant approaches are
therefore desirable, and the objective of the research reported in
this paper is the development of such approaches. If a failure is
likely to occur on a computing core on which a job is being
executed, then it is necessary to be able to move (migrate) the
job onto a reliable core [21]. Such mechanisms are not readily
available. At the heart of this concept is mobility, and a tech-
nique that can be employed to achieve this is using multi-agent
technologies [22].

www.sciencedirect.com/science/journal/00104825
www.elsevier.com/locate/cbm
http://dx.doi.org/10.1016/j.compbiomed.2014.02.005
http://dx.doi.org/10.1016/j.compbiomed.2014.02.005
http://dx.doi.org/10.1016/j.compbiomed.2014.02.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2014.02.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2014.02.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2014.02.005&domain=pdf
mailto:varghese@st-andrews.ac.uk
mailto:gerard.mckee@bazeuniversity.edu.ng
mailto:vassil.alexandrov@bsc.es
http://www.blessonv.com
http://dx.doi.org/10.1016/j.compbiomed.2014.02.005

B. Varghese et al. / Computers in Biology and Medicine 48 (2014) 28-41 29

Two approaches are proposed and implemented as the means
of achieving both the computation in the job and self-managing
fault tolerance; firstly, an approach incorporating agent intelli-
gence, and secondly, an approach incorporating core intelligence.
In the first approach, automated fault tolerance is achieved by a
collection of agents which can freely traverse on a network of
computing cores. Each agent carries a portion of the job (or sub-
job) to be executed on a computing core in the form of a payload.
Fault tolerance in this context can be achieved since an agent can
move on the network of cores, effectively moving a sub-job from
one computing core which may fail onto another reliable core.

In the second approach, automated fault tolerance is achieved
by considering the computing cores to be an intelligent network of
cores. Sub-jobs are scheduled onto the cores, and the cores can
move processes executed on them across the network of cores.
Fault tolerance in this context can be achieved since a core can
migrate a process executing on it onto another core.

A third approach is proposed which combines both agent and
core intelligence under a single umbrella. In this approach, a
collection of agents freely traverse on a network of virtual cores
which are an abstraction of the actual hardware cores. The agents
carry the sub-jobs as a payload and situate themselves on the
virtual cores. Fault tolerance is achieved either by an agent moving
off one core onto another core or the core moving an agent onto
another core when a fault is predicted. Rules are considered to
decide whether an agent or a core should initiate the move.

Automated fault tolerance can be beneficial in areas such as
molecular dynamics [23-26]. Typical molecular dynamics simula-
tions explore the properties of molecules in gaseous, liquid and
solid states. For example, the motion of molecules over a time
period can be computed by employing Newton's equations if the
molecules are treated as point masses. These simulations require
large numbers of computing cores that run sub-jobs of the
simulation which communicate with each other for hours, days
and even months. It is not desirable to restart an entire simulation
or to loose any data from previous numerical computations when
a failure occurs. Conventional methods like periodic checkpointing
keep track of the state of the sub-jobs executed on the cores, and
helps in restarting a job from the last checkpoint. However,
overzealous periodic checkpointing over a prolonged period of
time has large overheads and contributes to the slowdown of the
entire simulation [27]. Additionally, mechanisms will be required
to store and handle large data produced by the checkpointing

strategy. Further, how wide the failure can impact the simula-
tion is not considered in checkpointing. For example, the entire
simulation is taken back to a previous state irrespective of
whether the sub-jobs running on a core depend or do not depend
on other sub-jobs.

One potential solution to mitigate the drawbacks of check-
pointing is to proactively probe the core for failures. If a core is
likely to fail, then the sub-job executing on the core is migrated
automatically onto another core that is less likely to fail. This paper
proposes and experimentally evaluates multi-agent approaches to
realising this automation. Genome searching is considered as an
example for implementing the multi-agent approaches. The
results indicate the feasibility of the multi-agent approaches; they
require only one-fifth of the time compared to that required by
manual approaches.

The remainder of this paper is organised as follows. Section 2
presents the three approaches proposed for automated fault
tolerance. Section 3 highlights the experimental study and the
results obtained from it. Section 4 presents a discussion on the
three approaches for automating fault tolerance. Section 5 sum-
marises the key results from this study.

2. Methods

Three approaches to automate fault tolerance are presented in
this section. The first approach incorporates agent intelligence, the
second approach incorporates core intelligence, and in the third a
hybrid of both agent and core intelligence is incorporated.

2.1. Approach 1: fault tolerance incorporating agent intelligence

A job, J, which needs to be executed on a large-scale system is
decomposed into a set of sub-jobs J;,J5...J,,- Each sub-job J;,],...J,
is mapped onto agents Aj,A,...A, that carry the sub-jobs as
payloads onto the cores, Cq,C,...C, as shown in Fig. 1. The agents
and the sub-job are independent of each other; in other words, an
agent acts as a wrapper around a sub-job to situate the sub-job on
a core.

There are three computational requirements of the agent to
achieve successful execution of the job: (a) the agent needs to
know the overall job, J, that needs to be achieved, (b) the agent
needs to access data required by the sub-job it is carrying and

‘ Jobs ‘ ‘ Jobs ‘ ‘ Jobs ‘
‘ Sub-Jobs ‘ ‘ Sub-Jobs ‘ ‘ Sub-Jobs ‘
‘ Agents ‘ ‘ Agents ‘
‘ Virtual Cores ‘ ‘ Virtual Cores ‘
} |
Cores ‘ ‘ Cores ‘ ‘ Cores ‘
Approach 1: Fault Approach 2: Fault Approach 3: Fault
Tolerance Incorporating | | Tolerance Incorporating | | Tolerance Incorporating
Agent Intelligence Core Intelligence Hybrid Intelligence

Fig. 1. The job, sub-jobs, agents, virtual cores and computing cores in the two approaches proposed for automated fault tolerance.

Download English Version:

https://daneshyari.com/en/article/504973

Download Persian Version:

https://daneshyari.com/article/504973

Daneshyari.com

https://daneshyari.com/en/article/504973
https://daneshyari.com/article/504973
https://daneshyari.com

