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a b s t r a c t

Phasic electromyographic (EMG) activity during sleep is characterized by brief muscle twitches (duration
100–500 ms, amplitude four times background activity). High rates of such activity may have clinical
relevance. This paper presents wavelet (WT) analyses to detect phasic EMG, examining both Symlet and
Daubechies approaches. Feature extraction included 1 s epoch processing with 24WT-based features and
dimensionality reduction involved comparing two techniques: principal component analysis and
a feature/variable selection algorithm. Classification was conducted using a linear classifier. Valid
automated detection was obtained in comparison to expert human judgment with high (490%)
classification performance for 11/12 datasets.

Published by Elsevier Ltd.

1. Introduction

Labor-intensive, visual analysis of surface electromyographic
(EMG) activity during human sleep studies (i.e., polysomnography,
PSG) has provided a quantitative, physiologic research metric to
potentially track development of some neurodegenerative condi-
tions [1]. High rates of EMG activity during rapid eye movement
(REM) sleep occur in patients with idiopathic REM behaviour
disorder (RBD), a dramatic condition in which patients act out
their dreams and engage in potentially disruptive, injurious and
even dangerous behaviors (e.g., walking through glass doors)
while asleep [2]. RBD appears, in some cases, to be the earliest
sign of impending Parkinson0s Disease (PD), which may occur
decades later [3]. The elevated phasic muscle activity is subtle but
can be a potentially stable and objective physiological marker of
disease process [4] even on nights without dream enactment. This
makes it a potentially attractive metric as a diagnostic tool for
widespread use in sleep medicine. However, visual analyses of
such activity are extremely labor intensive (approximately 6 to 8 h
of visual scoring time per sleep recording [1]) and hinder immedi-
ate application in the clinical setting of overnight diagnostic PSG.

The work that we present here expedites detection of phasic
muscle activity by introducing a computerized identification scheme.
This work builds upon our previous investigation of unsupervised,
feature-based phasic EMG activity identification [5] by evaluating the
performance of a supervised phasic EMG activity detector, based on
the discrete wavelet (WT) transform [6]. We describe use of WT
analysis to decompose the EMG signal to discriminate between
phasic and non-phasic EMG activity. In this work we use the WT
transform to improve such discrimination, which contrasts to the
approach shown in [5], which considered time and frequency
components of the EMG signal separately. We excluded several
features used previously [5] because of redundancy.

Few computerized methods for quantification of surface EMG
signals recorded during human sleep to track neurodegenerative
disease have been attempted to date [7,8]. Apart from a small
range of features analyzed, such prior attempts all relied prema-
turely on case identification to derive estimates of case sensitivity
and case specificity, a strategy which ultimately confounds the two
separate issues of signal identification performance and patient
(case) versus control identification [5]. Such confusion can greatly
exaggerate performance estimates of a computerized system by
essentially “stacking the deck,” against the presence or absence of
time-based signals that occur stochastically in both patients and
controls over seconds to minutes during the course of a night of
sleep. Before evaluating the performance of any case-based
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identifying computerized system in a clinical or epidemiologic
setting, its accuracy regarding signal identification and validity
must be demonstrated in real time.

2. Materials and methods

2.1. Polysomnographic (PSG) data collection

We analyzed twelve overnight de-identified PSG data sets (each
consisting of separate left and right leg recordings from six individuals)
derived from the sleep laboratory at Emory University School of
Medicine in Atlanta, Georgia under an Institutional Review Board
approved protocol. Sleep durations for selected epochs of PSG data for
the six individuals are shown in Table 1. Extraction of real time leg
muscle activity was obtained from bipolar (i.e., two active sites on each
leg) surface electrodes with impedances below 10,000 Ω placed above
the right and left anterior tibialis. Data acquisition was accomplished
using the Embla (MedCare, Bloomfield, CO) sleep monitoring model
N-7000 digital PSG system, with the software program Somnologica s

2.0 at sampling rates of at least 200 Hz, which ensures sufficient
sampling to capture phasic EMG activity occurring within the 0.1 s
range specified within classical visual scoring guidelines. EMG data
was converted from Somnologica Embla format to.edf format, using
the MATLAB (version 7.8 R2009a) toolbox BioSig (Schloegl A-Graz
University of Technology, Graz, Austria). WT analysis and classification
routines were run using MATLAB (MathWorkss; Natick, MA) software
programs.

2.2. Visual labeling of phasic EMG activity

Performance of the automated scheme was evaluated with
respect to guidelines for manual assessment of phasic muscle activity
found in our previous work [1]. The twelve overnight PSGs were first
visually labeled for phasic and non-phasic muscle activity by the
same trained visual scorer. Individual 1 s epochs containing visually
identifiable artifacts were excluded. The left and right leg EMG
recordings were separately marked at 1 s intervals (epochs) as either
non-phasic (0), or phasic muscle activity (1). Data epochs that
contained signal amplitudes of four times the surrounding back-
ground activity, visually estimated for that epoch, with duration
ranges of 100 to 500 ms were marked as phasic muscle activity [1,5].
Epochs that did not meet the criteria for phasic muscle activity (e.g.,
activity 4500 ms) were marked as non-phasic muscle activity.
Scoring was conducted within the Somnologica software platform
with a screen resolution display of 10 s per viewing window and a
screen size of 15″ (see Fig. 1). Table 2 contains a summary of the
frequency of these visual scoring binary classifications for each data
set. EMG epochs with artifacts that included gross movements,
ballistocardiographic interference and other spurious information
were manually removed prior to formulation of the final data sets
and are not included in Table 2.

2.3. Computerized detection algorithm

2.3.1. General approach
In order to discriminate between phasic and non-phasic EMG

data segments, we implemented a pattern classification approach
(see Fig. 2), which involved data collection, feature extraction (WT
decomposition), dimensionality reduction (feature/variable selec-
tion [FVS] and principal components analysis [PCA]), and linear
classification. We consider feature extraction to be the most
essential component of classification system development,
because the selection of a “good” set of features are required to
fully characterize EMG data for successful automated phasic and
non-phasic EMG activity discrimination. To compensate for poten-
tially redundant or irrelevant features, the feature extraction stage
was followed by a dimensionality reduction stage which further
condensed relevant information in order to reduce classifier
training time and increase generalizability of the classifier.
Generalizability would be expected to be important if the classi-
fication approach was to be readily exported to PSG recordings not
included in this initial validation.

We tested both: (a) a linear transformation technique, PCA and
(b) a FVS algorithm represented by Forward Floating Search (FFS)
using a filter approach [9,10]. Lastly, for automated phasic and
non-phasic EMG activity discrimination we employed a linear
classifier since it has been cited to provide comparable results to
more advanced non-linear classifiers when applied to real data
sets [11], resembling the time and frequency components of
human muscle activity recorded with surface EMG.

2.3.2. Feature extraction
Classical approaches in signal processing typically have incor-

porated short-time Fourier transform (STFT) analysis, however,
WT analysis has advantages for non-stationary time series, which
typically characterize biopotentials [12]. WT analysis differs from
traditional STFT by its approach to information in time and
frequency domains. More specifically, WTs trade one type of
resolution (time vs. frequency) for the other, making them robust
for the analysis of non-stationary signals [6]. WTs decompose a
signal into scales, each representing a particular “coarseness” of
the signal. Data sets containing a mixture of features residing at
different time and frequency resolutions are well-suited for WT
analysis relative to STFT [13]. The presumed benefits of WT (vs.
STFT) to track phasic EMG activity, which appears in varying high
frequency bands (see Fig. 1), was a major factor underlying our
testing in order to determine whether WT analysis offered unique
EMG signal analysis advantages, as was the conventionality of this
technique. Other advantages included the lower computational
cost of the WT approach.

A WT ψ(t) is a localized waveform (a short-term duration
wave), which characterizes waveforms by vanishing moments
(VMs) of varying complexity [13]. Two basic manipulations can
be performed on the WT, stretching or squeezing (dilation) and
moving (translation). Dilation is governed by the scale parameter
a, whereas translation is governed by the parameter b. Smaller
scales correspond to higher frequency components and higher
scales correspond to lower frequency components. Dilated and
translated versions of the original mother WT comprise a family of
WTs defined by (with the original mother WT defined by para-
meters values a¼1 and b¼0):

ψ a;bðtÞ ¼
1ffiffiffi
a

p ψ
t�b
a

� �
ð1Þ

In our analysis we employed the discrete time WT trans-
form (DTWT), also known as the pyramid algorithm, which is

Table 1
Sleep duration and relative distribution of sleep stages (% sleep in min) for epochs
selected for EMG analysis.

Subject Duration of
Sleep (min)

NREM (% of sleep
[duration])

REM (% of sleep
[duration])

001 134 64.08 35.92
002 191 74.61 25.39
003 184 64.34 35.66
004 187 67.03 32.97
005 197 74.96 25.04
006 196 76.67 23.34
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