
A fast hierarchical clustering algorithm for large-scale protein
sequence data sets

Sándor M. Szilágyi a,1, László Szilágyi b,c,n,2

a Petru Maior University, Department of Informatics, Str. Nicolae Iorga Nr. 1, 540088 Tîrgu Mureş, Romania
b Budapest University of Technology and Economics, Department of Control Engineering and Information Technology, Magyar tudósok krt. 2, H-1117
Budapest, Hungary
c Sapientia University of Transylvania, Faculty of Technical and Human Sciences, Şoseaua Sighişoarei 1/C, 540485 Tîrgu Mureş, Romania

a r t i c l e i n f o

Article history:
Received 13 November 2013
Accepted 25 February 2014

Keywords:
Protein sequence clustering
Markov clustering
Markov processes
Efficient computing
Sparse matrix

a b s t r a c t

TRIBE-MCL is a Markov clustering algorithm that operates on a graph built from pairwise similarity
information of the input data. Edge weights stored in the stochastic similarity matrix are alternately fed
to the two main operations, inflation and expansion, and are normalized in each main loop to maintain
the probabilistic constraint. In this paper we propose an efficient implementation of the TRIBE-MCL
clustering algorithm, suitable for fast and accurate grouping of protein sequences. A modified sparse
matrix structure is introduced that can efficiently handle most operations of the main loop. Taking
advantage of the symmetry of the similarity matrix, a fast matrix squaring formula is also introduced to
facilitate the time consuming expansion. The proposed algorithm was tested on protein sequence
databases like SCOP95. In terms of efficiency, the proposed solution improves execution speed by two
orders of magnitude, compared to recently published efficient solutions, reducing the total runtime well
below 1 min in the case of the 11,944 proteins of SCOP95. This improvement in computation time is
reached without losing anything from the partition quality. Convergence is generally reached in
approximately 50 iterations. The efficient execution enabled us to perform a thorough evaluation of
classification results and to formulate recommendations regarding the choice of the algorithm's
parameter values.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Protein families are defined as groups of molecules with
relevant sequence similarity [1,2], the members of which are likely
to serve similar or identical biological purposes [3]. The identifica-
tion of protein families is generally performed by clustering
algorithms, mostly supported by pairwise similarity or dissimilarity
measures [4]. Well established properties of some proteins in a
family may be reliably transferred to other members whose func-
tions are not well known [5].

The classification of protein sequences has a wide variety of
methods [6], including motif-based classification [7], string
kernels [8], data mining techniques [9–11], string weighting [12],
word segmentation [13], feature hashing [14], and trees [15].

One of the greatest obstacle for these methods represents the
multi-domain structures of many protein families [16]. Several
ultra-fast clustering scheme have been introduced recently [17–
22] and successfully employed in protein sequence or interaction
grouping [23], but also in the clustering of large biochemical and
biological networks [24], and documents [25].

TRIBE-MCL is an efficient clustering method based on Markov
chain theory [26], introduced by Enright et al [4]. TRIBE-MCL
assigns a graph structure to the protein set such a way that each
protein has a corresponding node. Edge weights are stored in the
so-called similarity matrix S, which acts as a (column or row)
stochastic matrix. At any moment, edge weight sij reflects the
posterior probability that protein i and protein j have a common
evolutionary ancestor. Initial edge weights in the graph are
obtained via pairwise alignment of the sequences, performed by
the BLAST search method [27], preferred because of the sparse
nature of the provided similarity values.

TRIBE-MCL is an iterative algorithm, performing in each loop
two main operations on the similarity matrix: inflation and
expansion. Further operations like column or row normalization
and matrix symmetrization are included to serve the stability and
robustness of the algorithm, and to enforce the probabilistic

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cbm

Computers in Biology and Medicine

http://dx.doi.org/10.1016/j.compbiomed.2014.02.016
0010-4825 & 2014 Elsevier Ltd. All rights reserved.

n Corresponding author at: Sapientia University of Transylvania, Faculty of
Technical and Human Sciences, Şoseaua Sighişoarei 1/C, 540485 Tîrgu Mureş,
Romania. Tel.: þ40 265 208170; fax: þ40 265 206211.

E-mail addresses: szsandor72@yahoo.com (S.M. Szilágyi),
lalo@ms.sapientia.ro (L. Szilágyi).

1 Tel./fax: þ40 265 262275.
2 Tel.: þ36 1 463 4027; fax: þ36 1 463 2699.

Computers in Biology and Medicine 48 (2014) 94–101

www.sciencedirect.com/science/journal/00104825
www.elsevier.com/locate/cbm
http://dx.doi.org/10.1016/j.compbiomed.2014.02.016
http://dx.doi.org/10.1016/j.compbiomed.2014.02.016
http://dx.doi.org/10.1016/j.compbiomed.2014.02.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2014.02.016&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2014.02.016&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2014.02.016&domain=pdf
mailto:szsandor72@yahoo.com
mailto:lalo@ms.sapientia.ro
http://dx.doi.org/10.1016/j.compbiomed.2014.02.016


constraint. Inflation raises each element of the similarity matrix to
power r, which is a previously established fixed inflation rate. Due
to the constraint r41, inflation favors higher similarity values in
the detriment of lower ones. Expansion, performed by raising
matrix S to the second power, is aimed to favor longer walks along
the graph. Matrix symmetrization has a double role: it maintains
the largest value within a column (or row) on the diagonal of the
matrix, and eliminates the non-zero similarity values that fall
below a previously defined threshold value ε. Clusters are
obtained as connected subgraphs in the graph. Convergence
reportedly occurs within a few dozens of iterations. TRIBE-MCL
is a divisive hierarchical clustering algorithm: once separated, it
never connects isolated subgraphs to each other again, it produces
the clusters by dividing existing ones into several smaller groups.

This study has the main goal to introduce an efficient imple-
mentation of the TRIBE-MCL algorithm using a so-called sparse
supermatrix (SSM) data structure, and to investigate the behavior
of TRIBE-MCL via thorough tests using the large protein set of the
SCOP95 database [28].

The remainder of this paper is structured as follows: Section 2
takes into account the functional details of the TRIBE-MCL algo-
rithm and presents our motivations to introduce modifications.
Section 3 presents the details of the proposed efficient TRIBE-MCL
algorithm. Section 4 thoroughly evaluates the behavior of the
proposed method. Section 5 discusses the achieved results and
outlines the role of each parameter, while Section 6 concludes
this study.

2. Related works

TRIBE-MCL in its conventional, easily implementable form has
a theoretical complexity of Oðn3Þ, and needs up to 6 h to perform a
single loop on a data set containing 104 proteins. Although this
inefficient solution equally works with any kind of pairwise
similarity data, it is prohibitively slow. Accelerating the perfor-
mance starts with the choice of similarity criterion. For example,
BLAST gives us a virtually symmetrical similarity matrix with large
amount of zero values. These properties of the matrix are the
primary source of acceleration. Since the zero values do not
influence any of the TRIBE-MCL operations, it is possible to reduce
the computational load by avoiding (skipping) the additions and
multiplications with null arguments.

2.1. Matrix splitting

It may occur at any progress level of the algorithm, that
a certain column and the corresponding row of S remains with
a single non-zero value, which is situated on the diagonal of the
matrix. At this point, the node (and protein) corresponding to that
certain row can be declared an item isolated in a separate cluster,
having no more influence upon the other nodes in the further
iterations. Such rows (and columns) can be removed from S, thus
reducing the size of the matrix and the computational load of late
iterations. This way TRIBE-MCL may be accelerated up to 2 times,
depending on input data and parameter values [29]. This idea has
recently evolved to the matrix splitting solution, which started
from the idea that isolated subgraphs do not get into further
interactions with other nodes. This way, when the graph gets torn
into isolated subgraphs, which usually occurs after 5–8 iterations,
the initial big matrix can be reorganized (via row or column
reordering) into several small diagonally situated blocks, and the
further computations may neglect the computations with simila-
rities situated outside the blocks, as they are all zero. This way late
iterations of TRIBE-MCL can speed-up 104 times, and the total
runtime becomes 20–50 times shorter [30].

2.2. Sparse matrices

Besides not having to compute additions and multiplications
with null arguments, the large amount of zero values in the
similarity matrix need not be stored during the TRIBE-MCL
iterations. Sparse matrices are suitable data structures for such
efficient implementations: while computing the normalization of
a column or row, zero elements are not added to the sum, thus
reducing the number of additions. In fact, a zero element can only
change to non-zero during the expansion. But also in case of the
expansion, zero elements in the input do not affect the outcome of
any element of the output matrix.

The rest of this section refers to the version of sparse matrix
where non-zero elements of columns are stocked in a chained list,
ordered by row coordinate. Thus the sparse matrix has an array of
list head pointers, each one pointing to the first non-zero element
of the corresponding column. Each non-zero element is repre-
sented by the structure ðrow; value;nextÞ. The latter variable in the
structure is a pointer to the next non-zero element in the column.

Inflation requires a single parsing of each column and thus the
power computation is only performed for non-zero elements. The
normalization needs to parse each column twice: first it computes
the sum of each column and then it divides all non-zero elements
by the sum of the column. Assuring matrix symmetry is more
complicated, because it requires searching for the transposed of
each non-zero element.

Expansion requires a new sparse matrix for the output. During
the computation of the expanded matrix, the elements of each
column are determined in such an order, that new non-zero
elements are always placed at the end of the list. That is why, it
is worth to have a pointer to the tail of the column list as well.
Further on, as expansion is computed right after having made the
similarity matrix approximately symmetrical, we may find the
element sij as

sðnewÞ
ij ¼ ∑

n

k ¼ 1
sikskj � ∑

n

k ¼ 1
siksjk ; ð1Þ

which is easier to compute as columns are way easier to parse
than rows in this data structure.

Using such an implementation can reduce the total runtime
100–200 times, but clustering 104 proteins still requires a couple
of hours [31].

3. Materials and methods

In this paper we introduce an efficient implementation of the
TRIBE-MCL algorithm, with the aim of significantly reducing its
computational load, without harming the outcome of classifica-
tion. A special set of data structures will be introduced to facilitate
the quick execution of the main operations, and the features of the
similarity matrix will be fully exploited to achieve an extremely
quick performance. The proposed method will be tested on the
proteins of the SCOP95 database.

3.1. The SCOP95 database

The SCOP (Structural Classification of Proteins) database [28]
contains protein sequences in order of tens of thousands, hier-
archically classified into classes, folds, superfamilies and families
[32,33]. The SCOP95 database involved in this study, is a subset of
SCOP (version 1.69), which contains n¼11,944 proteins, exhibiting
a maximum similarity of 95% among each other. Pairwise similar-
ity and distance matrices (BLAST [27], Smith–Waterman [34],
Needleman–Wunsch [35], PRIDE [36], etc.) are available at the
Protein Classification Benchmark Collection [37,38]. In this study

S.M. Szilágyi, L. Szilágyi / Computers in Biology and Medicine 48 (2014) 94–101 95



Download English Version:

https://daneshyari.com/en/article/504979

Download Persian Version:

https://daneshyari.com/article/504979

Daneshyari.com

https://daneshyari.com/en/article/504979
https://daneshyari.com/article/504979
https://daneshyari.com

