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Calcium cycling is crucial in the excitation-contraction coupling of cardiomyocytes, and therefore has a
key role in cardiac functionality. Cardiac disorders and different drugs alter the calcium transients of
cardiomyocytes and can cause serious dysfunction of the heart. New insights into this biochemical
phenomena can be achieved by studying and analyzing calcium transients. Calcium transients of
spontaneously beating human induced pluripotent stem cell-derived cardiomyocytes were recorded for
a data set of 280 signals. Our objective was to develop and program procedures: (1) to automatically
detect cycling peaks from signals and to classify the peaks of signals as either normal or abnormal, and
(2) on the basis of the preceding peak detection results, to classify the entire signals into either a normal
class or an abnormal class. We obtained a classification accuracy of approximately 80% compared to class
decisions made separately by an experienced researcher, which is promising for the further development
of an automatic classification approach. Automated classification software would be beneficial in the
future for analyzing cardiomyocyte functionality on a large scale when screening for the adverse cardiac

effects of new potential compounds, and also in future clinical applications.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Calcium (Ca?*) cycling plays a critical role in the excitation—
contraction coupling of cardiomyocytes, and it is the link between the
electrical signaling in the cardiomyocyte and contraction. Changes
and variability in Ca®>* transients can be seen because of cardiac
diseases or different drugs, which can have profound consequences
for the function and phenotype of cardiomyocytes. For example,
when cardiac failure progresses, changes in Ca?* regulation and flux
are observed, and failing hearts are also characterized by more
arrhythmic Ca®* signals [1]. Characterization of Ca®>* cycling is
crucial in cardiac research in order to facilitate investigations of
cardiac disorders and dysfunction, and to study disease management
with different compounds. Ca®* imaging of cardiomyocytes is a
widely used technique for monitoring their Ca®>* cycling activity
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in vitro. Intracellular Ca?>* cycling can be recorded with the help of
fluorescent Ca®* indicator dyes.

Cardiac functionality can be studied with the help of cardio-
myocytes differentiated from human pluripotent stem cells [2-4].
Induced pluripotent stem cell (iPSC) technology - where pluripo-
tent stem cells are generated by reprogramming differentiated
cells into a pluripotent state - provides an especially useful tool for
studying the pathophysiology of various disorders and drug
responses in human cells. Human iPSCs can be differentiated into
the desired cell type, retaining the original genotype. New insights
into calcium handling in different cardiac diseases have been
achieved after the invention of iPSCs [5-10].

To empower cardiologic investigations, we have developed a
signal analysis procedure for the detection and classification of
Ca’* cycling or transients (peaks) in cardiomyocyte signal data,
plus another procedure for the classification of entire signals into
either a normal or abnormal class on the basis of results of the
preceding procedure. These computational tasks are essential for
the development of automatic tools for the selection of valid cell
lines, the observation of abnormal Ca?* transients, and the
analysis of different drug responses.
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Spontaneously beating cardiomyocytes were differentiated
from iPSCs derived from patients with catecholaminergic poly-
morphic ventricular tachycardia (CPVT), a genetic cardiac disease.
CPVT is an exercise-induced malignant arrhythmogenic disorder,
which can cause increased calcium (Ca2™) sensitivity and lead to
spontaneous Ca’* release from the sarcoplasmic reticulum, the
generation of after-depolarizations, and triggered activity [11]. We
were interested in the recognition of the Ca?* transient abnorm-
alities of these cardiomyocytes, as revealed by the frequency and
especially the shape deformations being manifested within the
peaks of the cycling signals. For this purpose, we developed signal
analysis and classification procedures to enable the automatic
processing of cardiomyocyte data [12]. In the present study, we
have developed and extended our method to identify and classify
Ca%™ transients efficiently. To the best of our knowledge, this kind
of classification has so far been done only subjectively and visually.
We have also developed a separate method for the interactive use
of human experts to select and analyze Ca®* transients that
supports our efforts for the current method [13]. This analysis
area will be important for the cardiology and pharmaceutical
industry and, therefore, computational methods will be needed
for future medical research and its applications.

2. Cell data

The study was approved by the Ethics Committee of Pirkanmaa
Hospital District (R08070). Patient-specific iPSC lines were estab-
lished with retroviruses encoding for OCT4, SOX2, KLF4, and MYC,
as described earlier [2]. All the cell lines were characterized for
their karyotypes, mutations, pluripotency by RT-PCR, immunocy-
tochemistry, embryoid body (EB), and teratoma formation. The
IPSCs were then co-cultured with murine visceral endoderm-like
(END-2) cells (Humbrecht Institute, Utrecht, The Netherlands) to
differentiate them into spontaneously beating cardiomyocytes. The
beating areas of the cell colonies were dissociated mechanically and
enzymatically with collagenase A (Roche Diagnostics) [14].

Ca®* imaging was conducted in spontaneously beating, 4 1M Fura-
2 AM (Invitrogen, Molecular Probes)—loaded dissociated cardiomyo-
cytes as described earlier [7]. Cardiomyocytes were continuously
perfused with 37 °C HEPES-based perfusate during measurements.
The perfusate consisted of (in mM) 137 NaCl, 5 KCl, 0.44 KH,PO,4, 20
HEPES, 4.2 NaHCOs, 5 p-glucose, 2 CaCl,, 1.2 MgCl,, and 1 Na-pyruvate
(the pH was adjusted to 7.4 with NaOH). Ca®>* measurements were
conducted on an inverted IX70 microscope (Olympus Corporation,
Hamburg, Germany), and cells were visualized with a UApo/340 x 20
air objective (Olympus). Images were taken with an ANDOR iXon 885
CCD camera (Andor Technology, Belfast, Northern Ireland) and syn-
chronized with a Polychrome V light source by a real time DSP control
unit and TILLvisSION or Live Acquisition software (TILL Photonics,
Munich, Germany). Fura 2-AM in the cardiomyocytes was excited at
a light wavelength of 340 nm and 380 nm, and the emission was
recorded at 505 nm. For Ca?* analysis, regions of interest were
selected for spontaneously beating cells and background noise was
subtracted before further processing. Signals were acquired as the
ratio of the emissions at 340/380 nm wavelengths.

3. Signal data and its preprocessing

The data were generated with two different software programs.
Thus, various sampling frequencies were used to record signal
data: frequencies of approximately 8, 10, and 11 Hz were used with
one program and a frequency of 23 Hz was used with the other
program. Cycling peaks and other properties varied remarkably in
signals. We recorded 280 signals, the lengths of which varied from

approximately 11 to 24 s. The recorded signals were fairly short
since the Ca?* imaging method can damage the cells by photo-
toxicity; therefore, this limits their exposure time. On the other
hand, short signals contained scant information, such as peaks,
making the computational decision-making (classification) tasks
difficult.

At first, a linear descending trend was removed from each
signal according to the best straight-line fit, because such a trend
was present in all signals. These modified signals were only used
up to the step of the peak detection, after which, the feature values
of peaks detected were computed from the original signals.
Removal of a trend was used in order to facilitate peak detection.
Signals of the highest sampling frequency were also filtered with a
median filter [15], including a filtering window of 3 samples.
However, this was not done for the signals of the lower sampling
frequencies of 8, 10, and 11 Hz, since the smallest pertinent peaks
of these signals included only a few samples, i.e., they would have
been too sensitive even to this light filtering. By using median
filtering for the highest sampling frequency signals (23 Hz), the
signals were smoothed out to more closely resemble the lower
sampling frequencies’ types of signals. Furthermore, the same
constant thresholds for peak detection and some of the percentage
bounds for peak classification employed for the low frequencies’
signals also suited the higher frequency signals better. The signal’s
minimum was subtracted from all samples to set a zero minimum
for simplicity, e.g., for visual exploration in later figures.

All samples were computed as amplitude values to explore the
distribution of these values. In order to compare the average amplitude
values at the beginning and the end, distribution estimate A was
computed for an average amplitude of the large peaks (see Fig. 1). The
purpose of A is simply to aid the subsequent peak detection as a rough
estimate. The amplitudes of normal peaks are virtually always this kind
of large peak. The amplitudes of abnormal peaks can be either smaller
than the normal ones or also equally high. Of course, their shapes
could also be affected (Figs. 1-3).

Ultimately, the first derivative signal was approximated from a
preprocessed signal using linear regression by sliding it through the
signal as a window of 3 or 7 (the latter for the highest sampling

250

— —

Ratio of emissions

0 20 40 60 80 100 120 140 160 180 200
Samples

Fig. 1. A signal of 19.2 s sampled at 10.4 Hz, after the removal of a linear trend. A
few peaks of small amplitudes with vertical black arrows were recognized as
abnormal by the peak procedure since they were too small compared to amplitude
estimate A. Therefore, the whole signal was determined to be abnormal by the
procedure, and this was also judged to be the case by the human expert. In
addition, the procedure assessed one larger peak (with the black horizontal arrow)
as abnormal due to its asymmetry. There is no quantitative unit for the vertical axis
since abscissa values are ratios of two measured values. The peak classification
procedure recognized the peaks with green markers (without black errors) as
normal and the others as abnormal.
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