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a b s t r a c t

Common Spatial Patterns (CSP) is a widely used spatial filtering technique for electroencephalography
(EEG)-based brain–computer interface (BCI). It is a two-class supervised technique that needs subject-
specific training data. Due to EEG nonstationarity, EEG signal may exhibit significant intra- and inter-
subject variation. As a result, spatial filters learned from a subject may not performwell for data acquired
from the same subject at a different time or from other subjects performing the same task. Studies have
been performed to improve CSP's performance by adding regularization terms into the training. Most of
them require target subjects' training data with known class labels. In this work, an adaptive CSP (ACSP)
method is proposed to analyze single trial EEG data from single and multiple subjects. The method does
not estimate target data's class labels during the adaptive learning and updates spatial filters for both
classes simultaneously. The proposed method was evaluated based on a comparison study with the
classic CSP and several CSP-based adaptive methods using motor imagery EEG data from BCI
competitions. Experimental results indicate that the proposed method can improve the classification
performance as compared to the other methods. For circumstances where true class labels of target data
are not instantly available, it was examined if adding classified target data to training data would
improve the ACSP learning. Experimental results show that it would be better to exclude them from the
training data. The proposed ACSP method can be performed in real-time and is potentially applicable to
various EEG-based BCI applications.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Brain–computer interface (BCI) is a communication technique
that aims to identify a subject's brain intents and translate them into
machine commands to control the operations of electromechanical
devices. Electroencephalography (EEG) might be the most widely
used noninvasive imaging technique in BCI. Due to the non-
stationary nature of EEG, which is usually caused by changes of
electrodes impedance or positions, subjects' attention, fatigue, eye
movements, or muscular activity, EEG signals exhibit large intra-
and inter-subject variation [1]. As a result, an observed EEG pattern
from a subject might not be repeatable from the same subject at a
different time or from different subjects performing the same task.
Various methods have been proposed to address the nonstationarity
in EEG-based BCI [1,2]. These methods were focused on either
feature extraction process [1,3–16], or feature modelling and classi-
fication [16–29]. Some methods adapt to the intra- and/or inter-

subject variation through supervised adaptive learning [20,24,30],
semi-supervised or unsupervised learning [3,4,7,11,17–19,23,31–34],
while others try to identify stationary patterns that are common
within a single subject or across multiple subjects [1,5,6,8–
10,12,14,13,15,21,22,25–27,35,36]. Among these studies, methods
developed based on common spatial patterns (CSP) have been paid
special attention. CSP is a two-class spatial filtering technique that
maximizes the variance of band-passed EEG signals from one class
while minimizing the signal variance from the other [37]. It is
efficient in extracting representative features for BCI classification,
and can be extended for multi-class BCI applications. The original
CSP method is a supervised and subject specific technique that
requires training data from a target subject with known class labels.
It is typically used on a subject-by-subject basis, and might not
perform well for multi-subject BCI.

In order to improve the multi-subject performance of CSP, prior
information from different subjects can be added to the CSP learning
via regularization. The regularization is typically implemented in two
ways [14]. One is to calculate a weighted average of covariance
matrices of EEG data from different subjects [3,38,4,6,7,12,39]. Fixed
experiential weights are often used [3,4,12,39], but adaptive weights
are also proposed to better quantify the similarity between training
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and testing data [40,41,38,6,7]. The other is to regularize the CSP
objective function by adding a penalization term to impose prior
information from multiple subjects [5,15,14,10,9]. By incorporating
multi-subject information, the regularized CSP methods can outper-
form the conventional CSP in multi-subject BCI classification tasks.
Most of the regularized CSP methods require labelled training data
from target subjects. If training data are unlabelled, an estimation of
their class labels is performed so that the data can be assigned to a
specific class to update the covariance matrix of this class [3,9,7,4].
Erroneous estimations would affect the CSP learning and deteriorate
the BCI classification performance.

In this work, a different method to perform adaptive CSP
(ACSP) learning is investigated. The method uses unlabelled EEG
data from target subjects to learn spatial filters without an
estimation of class labels for the target data, and updates spatial
filters for both classes simultaneously using adaptive weights.
There is no classification needed during the adaptive learning,
and spatial filters can be updated in real-time to adapt to intra-
and inter-subject variation in EEG. It can be used to classify single
trial EEG data from single or multiple subjects. The proposed
method was evaluated using multi-subject motor imagery EEG
data from BCI competitions III and IV.

The remaining part of the paper is organized as follows. The
classic CSP method is introduced in Section 2.1. The proposed ACSP
method is described in Sections 2.2, 2.3, and 2.4. Section 2.5
explains the experimental EEG data used in this study, and how
the method was evaluated. Experimental results are described and
discussed in Section 3. Finally, Section 4 summarizes the paper.

2. Materials and methods

2.1. Common spatial patterns

The proposed adaptive CSP method is developed based on the
classic CSP approach [42,43]. CSP is a supervised two-class spatial
filtering technique that aims to maximize feature variation for one
class and simultaneously minimize feature variation for the other.
Given an M � N matrix EiðyÞ that represents the ith trial of EEG
data collected under a brain task with class label y, yAf1;2g, the
normalized class-specific spatial covariance matrix Cy is computed
as:

Cy ¼
1
ny

Xny

i ¼ 1

EiðyÞET
i ðyÞ

trðEiðyÞET
i ðyÞÞ

; ð1Þ

where EiðyÞ is mean-centered, M is the number of channels, N is
the number of time points, ny is the number of EEG trials in class y,
and T is the matrix transpose operator. Based on the covariance
matrix, the CSP training is to maximize the following Rayleigh
coefficient:

WCyWT

W
P

yCyWT ; ð2Þ

which is equivalent to solve the generalized eigenvalue problem
[40,14,37]:

C1W
T ¼ C2W

TΛ; ð3Þ
where the matrix W consists of spatial filters in rows, and Λ is a
diagonal matrix assorted in descending order of eigenvalues of
C�1
2 C1 that measure the variance ratio between the two classes.

With the projection matrix W, the spatial filtering of a trial EiðyÞ is
computed as:

Zi ¼WEiðyÞ: ð4Þ
The columns of W�1 are the common spatial patterns that are

considered as time-invariant EEG source distribution vectors. The

discrimination is based on the feature projections on W with
maximal variations, which are the first and last m rows of Zi. Based
on Zi, a feature vector is constructed for the ith trial with the rth
spatial filter:

xr ¼ log
VarðzrÞP2m
j ¼ 1 VarðzjÞ

" #
; ð5Þ

where VarðÞ is the variance calculator, and zr is the rth row of Zi.
The logarithmic transformation is applied to make the distribution
of xr more close to Gaussian.

2.2. Adaptive common spatial patterns

In CSP and some of its extensions for multi-subject analysis, the
spatial filter W is calculated and then fixed for the processing of
new data [6,12,15]. When there is no or unlabelled training data
from target subjects, fixed spatial filters are usually not sufficient
to characterize spatial covariance structures of new data. CSP
extensions have been proposed to adapt to unlabelled data
[3,38,9,7,4]. For example, in an adaptive method proposed in [3],
the class label of each testing trial is first estimated. Then the trial
is assigned to the estimated class to update its covariance matrix
with a fixed weight, and CSP features are updated and reclassified.
In a parametric model-based adaptive method [4], CSP features
extracted from a testing trial are modelled by a two-component
Gaussian mixture model (GMM). The expectation maximization
(EM) algorithm is used to estimate class labels for testing trials.
The classified trials showing high posterior class probabilities are
added to the estimated class to update its covariance matrix and
CSP features. This process is repeated multiple times until the
overall change of class labels between two contiguous iterations is
below a predefined threshold. In another adaptive method [7],
an initial classification is first performed on a testing trial, and
then the covariance matrix of the estimated class is updated
based upon a weight calculated using the Kullback–Leibler diver-
gence (KLD) between the training and testing trials. After updating
the covariance matrix, CSP features are updated and reclassified.
This process can be repeated multiple times. An initial
classification is required in these methods to assign a testing trial
to a class to update the class spatial covariance matrix. Ideally, if
the new trial is from class y, then it should be similar to training
trials from y in terms of feature variation, data distribution, or
normalized spatial covariance matrix, and be correctly classified
by a classifier. Due to EEG nonstationarity, however, the expected
similarity may not be apparent, and it is possible that the new data
is more similar to training data of the opposite class. If the new
trial is mis-classified, the spatial filters updated based on the
erroneous classification could affect the BCI classification. In this
work, a different way to perform the ACSP learning is proposed.
Instead of estimating class labels for new EEG trials, a similarity
measure between new and training data in each class is
calculated, and spatial filters of both classes are simultaneously
updated based on the similarity measure. Three different similar-
ity measures are used based upon which the ACSP method is
developed. The details of the proposed method are described as
follows.

Given a new EEG trial from a target subject with an unknown
class label and a normalized spatial covariance matrix Cnew, the
following method is proposed to calculate the new class covar-
iance matrices:

C1 ¼
ϕ1

n1þsgnðϕ1Þ
Cnewþ n1

n1þsgnðϕ1Þ
C1;

C2 ¼
ϕ2

n2þsgnðϕ2Þ
Cnewþ n2

n2þsgnðϕ2Þ
C2; ð6Þ
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