
Analysis

The ghost of extinction: Preservation values and minimum viable population in
wildlife models

Mark E. Eiswerth a, G. Cornelis van Kooten b,⁎
a Department of Economics, University of Wisconsin, Whitewater, United States
b Department of Economics, University of Victoria, Canada

a b s t r a c ta r t i c l e i n f o

Article history:
Received 10 July 2008
Received in revised form 9 January 2009
Accepted 15 February 2009
Available online 13 March 2009

Keywords:
Marginal willingness to pay
Endangered species and extinction
Minimum viable population

JEL category:
Q20
Q24
C61

The inclusion of a minimum viable population in bioeconomic modeling creates at least two complications
that are not resolved by using a modified logistic growth function. The first complication can be dealt with by
choosing a different depensational growth function. The second complication relates to the inclusion of the
in situ benefits of wildlife into the analysis. Knowledge about the magnitude of the in situ benefits provides
no guide for policy about conservation management. Simply knowing that people are willing to pay a large
amount each year to protect a species says nothing about whether one should manage habitat to protect or
enhance the species' numbers, unless the species is in imminent danger of extinction. If willingness to pay is
to be a guide, it needs to be better tied to population numbers, especially the minimum viable population.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Economists have adopted Colin Clark's (1990) general framework
for analyzing optimal wildlife populations and harvest levels, with one
twist: they have explicitly introduced preservation benefits to say
something about socially optimal populations. The logistic growth
function has become the mainstay of such analyses, although when
there is a threat of extinction (or more appropriately extirpation) a
depensatory logistic growth function that explicitly includes a
minimum viable population may be employed (Conrad, 1999).
While mathematical models with the modified logistic growth
function improve the richness of the policy insights, there are two
problems with its use in practice. The modified logistic growth
function encourages overharvesting that could lead to extinction.
Further, its use in determining the socially optimal population of a
species becomes exceedingly complex if in situ benefits of wildlife are
included.

With regard to the latter, the main argument used by economists
and others for preserving wildlife species is that they provide
significant non-use benefits, as demonstrated by peoples' apparent
willingness to pay (WTP) to preserve a variety of species (Loomis and

White, 1996), and that these benefits tip most cost–benefit analyses in
favor of programs that protect species. Indeed, preservation value is
often the foremost determinant of an economically optimal popula-
tion. However, as demonstrated in this paper, assumptions about how
preservation benefits are allocated between maintaining a safe
minimum viable population and increasing numbers above this
minimum have a profound effect on the policy choice (Bulte and
van Kooten, 1999). Although contingent valuation studies have
estimated high values for preserving species and ecosystems
(Costanza et al., 1997), such information by itself may be meaningless
for guiding policy related to the issue of ‘how many’ wildlife. Rather,
one needs to know how peoples' willingness to pay to protect species
is allocated between preventing extinction and enhancing numbers
above some ‘safe’ minimum viable population required to keep the
species from going extinct. As shown in this paper, knowledge is
needed not only about peoples' marginal WTP, information which is
generally unavailable, but also about how marginal WTP changes as
the population size increases (i.e., about the functional form of
marginalWTP). The informational requirements are quite demanding,
and this has implications for the questions asked in contingent
valuation surveys.

The objective of this paper is to improve research and policy
related to wildlife management by highlighting these two problems.
The focus is on wildlife species that are subject to hunting and have
charismatic appeal. First, we specify a population growth function that
accommodates a minimum viable population and results in realistic
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rates of growth. This growth function is then incorporated in an
optimal control model that includes both harvest and in situ (non-
use) benefits. Second, we develop the mathematics for modeling non-
use benefits of preventing extinction bymaintaining a stock just at the
minimum viable population (MVP) or augmenting the stock size
above MVP. Third, we derive the steady-state conditions for the
optimal population size under two alternative assumptions regarding
the functional form ofmarginal non-use benefits. Finally, we develop a
numerical application of the models to the conservation of sage
grouse, a harvested bird that is a species of concern in several western
U.S. states, and present solutions to the models. We conclude by
discussing implications of our contribution for valuation research
related to the management of charismatic wildlife species.

2. Modeling growth of wildlife species

We begin by postulating the popular Verhulst logistic function that
is most-often used to describe the fecundity, mortality and growth
characteristics of a fishery or charismatic wildlife population:

G x tð Þð Þ= γx tð Þ 1− x tð Þ
K

� �
; ð1Þ

where x refers to fish biomass or wildlife numbers at time t, γ is the
intrinsic growth rate, and K is the carrying capacity of the ecosystem.
Growth function (1) is a quadratic polynomial with the characteristic
that, in the absence of intervention, the population will always tend
toward the ecosystem carrying capacity K, even if it is very close to
zero. This is unrealistic because, for numbers below some minimum
level, a species will eventually go extinct, perhaps despite intervention
to prevent this.

To determine whether a species has a good chance of survival, it is
necessary to take into account the possibility (as opposed to
probability1) of a population surviving under various assumptions
about its habitat, reproduction, predation, legal and perhaps illegal
harvests (including incidental take while hunting other species,
referred to as by-catch in the fishery), genetic deterioration, and so
on. To do so, we specify a growth function that includes the notion of a
minimum viable population (MVP), denoted by M. The modified
logistics growth function most commonly used to take into account
extinction is (Clark, 1990, p.23; Conrad, 1999, p.33):2

G x tð Þð Þ= γx tð Þ x tð Þ
M

− 1
� �

1− x tð Þ
K

� �
: ð2Þ

Despite its use in theoretical and empirical applications (e.g., Bulte
and van Kooten, 1999, 2001), this specification has some undesirable
properties. We illustrate this with the aid of Fig. 1, which gives the
growth (panel a) and population response (panel b) of a slow-
growing mammal species. As long as population exceeds MVP,
harvests set equal to growth will leave the population intact.

Fig. 1 highlights the first problem with the modified logistics
growth function (2): if used as a basis for policy recommendations,
harvest levels will be too high, perhaps dangerously so if actual
growth is closer to the standard logistics growth function (1) than the
modified function (2). Further, starting with a population of 15,000
animals, say, the depensatory growth function (2) results in a too
rapid approach to carrying capacity of 100,000 compared to the
standard logistics function. For the same intrinsic growth rate and

carrying capacity, maximum growth (and thus harvest) with the
logistics functional form is 2000 animals per year, while it is 18,000
animals with function (2)!

To address such ‘unrealistic’ growth, we specify the following
growth function due to Boukal and Berec (2002):3

G x tð Þð Þ= γx tð Þ x tð Þ− M
x tð Þ+M

� �
1− x tð Þ

K

� �
: ð3Þ

The population response for this specification is much closer to
that of standard logistic growth, with annual growth peaking at 1636
animals (Fig. 1a). Policy based on growth function (3) is less likely to
lead to potential overharvesting.

To address the second problem, that of determining optimal
population and harvest levels when in situ benefits are included and
there exists the possibility of extinction, a model of wildlife manage-
ment and exploitation is first required.

3. An optimal control model for wildlife species

The benefits that society gets from protecting a wildlife species can
be grouped into two general categories. Some receive benefits from
harvesting, and these may exceed the costs of purchasing a hunting
permit, harvesting the animal (viz., expenditures on firearms, ammuni-
tion, fishing gear, boats, specialized clothing, accommodation), and
getting to the hunting location. However, wildlife also provide benefits
to thosewho observe them in thewild (non-consumptive use benefits),
to citizens who benefit simply from knowing that they exist, and to
society as a whole because a species contributes to overall biodiversity.
Although such benefits are difficult to measure, economists can employ
a variety of techniques to determine their magnitude (Loomis and
White, 1996).

Assume that the authority wishes to maximize the discounted sum
of net use and non-use benefits of a wildlife species over time. This is
expressed mathematically as:

Z∞
o

p h tð Þð Þh tð Þ− c h tð Þð Þ+ B x tð Þð Þ½ �e− rtdt; ð4Þ

where p(h)h−c(h) is the net benefit of harvesting and/or consuming
h animals at time t, and B(x(t))N0 are total non-use benefits as a
function of the in situ population at time t. The demand function is
downward sloping if harvesters can influence price, p'(h)b0, while it
is perfectly elastic if price is constant. Further, c′(h)N0, with marginal
cost upward sloping if c″(h)N0 and constant if c″(h)=0, both of
which are possible. It is assumed that B′(x)N0 and B″(x)b0, implying
that non-use benefits increase as the wildlife population increases,
with marginal benefits positive but declining as numbers increase.
Finally, r is the social discount rate.

The economic problem is to maximize Eq. (4) subject to the
population dynamics:

:
x = G x tð Þð Þ− h tð Þ; ð5Þ

where G(x) is the growth function (2) or (3) if there exists a MVP.
From the maximum principle, the respective optimality condition and
co-state equation are (suppressing t):

λ= p hð Þ+ pV hð Þh½ � − cV hð Þ: ð6Þ
:
λ = r − GV xð Þ½ �λ − BV xð Þ: ð7Þ

1 It is beyond the scope of the current paper to model uncertainty and meta-
populations (local extinction and ‘replenishment’ from elsewhere). See van Kooten
and Bulte (2000, pp. 211–215) for a discussion of these issues.

2 This function exhibits what in fisheries is referred to as depensational growth. It is
a population-level phenomenon related to spawner-recruitment, unlike the Allee
effect that shows up as a lower per capita growth rate at low population levels (Boukal
and Berec, 2002).

3 Boukal and Berec (2002) also demonstrate that the discrete-time and continuous-
time versions of growth models can exhibit quite different population dynamics.
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