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a b s t r a c t

In the search for a cure for many muscular disorders it is often necessary to analyze muscle fibers under
a microscope. For this morphological analysis, we developed an image processing approach to
automatically analyze and quantify muscle fiber images so as to replace today’s less accurate and
time-consuming manual method. Muscular disorders, that include cardiomyopathy, muscular dystro-
phies, and diseases of nerves that affect muscles such as neuropathy and myasthenia gravis, affect a large
percentage of the population and, therefore, are an area of active research for new treatments. In research,
the morphological features of muscle fibers play an important role as they are often used as biomarkers to
evaluate the progress of underlying diseases and the effects of potential treatments. Such analysis involves
assessing histopathological changes of muscle fibers as indicators for disease severity and also as a criterion
in evaluating whether or not potential treatments work. However, quantifying morphological features is
time-consuming, as it is usually performed manually, and error-prone. To replace this standard method, we
developed an image processing approach to automatically detect and measure the cross-sections of muscle
fibers observed under microscopy that produces faster and more objective results. As such, it is well-suited
to processing the large number of muscle fiber images acquired in typical experiments, such as those from
studies with pre-clinical models that often create many images. Tests on real images showed that the
approach can segment and detect muscle fiber membranes and extract morphological features from highly
complex images to generate quantitative results that are readily available for statistical analysis.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

To address the need for quick and objective analysis of muscle
fibers to develop novel therapies, we present, in this paper, an
image processing approach for microscopic images to segment and
analyze cross-sections of muscle fibers. In the search for treat-
ments for the large populations with many types of muscular
disorders like muscular dystrophy (MD), researchers have to
manually examine and analyze the morphology of muscle fibers
to identify important biomarkers about the fibers, such as the
restoration of lost membrane proteins and presence of endomysial
fibrosis or whether they are degenerative or regenerative. Indeed,

morphological features of muscle fibers are important biomarkers
of muscle health and indicators of success of therapeutic treat-
ments. Manual analysis, however, is time-consuming and error-
prone, given that it is subject to inter-observer variations; there-
fore, our quantitative analysis approach is a needed replacement.

Specifically, we developed algorithms to measure muscle fiber
morphologies in a high-throughput high-content manner and tested
it on images acquired from a preclinical model of Duchenne muscular
dystrophy (DMD), which is the most common and severe form of MD
[1] that affects 1 in 3500 newborn boys. The method was tested on
microscopic images of the tibialis anterior (TA) muscles of mdx
(C57BL/10ScSn-Dmdmdx/J) mice, and we show that it achieved high
accuracy in identifying muscle fibers, quantifying their parameters,
and exporting quantitative results for further statistical analysis.
Despite microscopic images of cross-sections of muscle fibers being
often challenging to analyze because not only must cross-sections be
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segmented but individual cross-sections must be identified to
measure perimeters, areas, and other features, our image processing
approach provided a quick, objective, and quantitative tool to analyze
highly complex muscle fiber images. As each image consists of
hundreds to thousands of muscle fibers, an image processing method
should be highly automatic and robust to handle cross-sections of
muscle fibers of different signal intensities, shapes, and sizes. In
addition, an automated image processing approach needs to identify
areas that did not belong to valid muscle fibers to exclude them from
measurement. As a single experiment may create hundreds micro-
scopic images of muscle fibers, it is not suited to manual analysis that
cannot keep up with large numbers of images and that involves a
human observer who is often forced to manually click points on a
computer screen to mark the boundary of a muscle fiber. Given that
two observers are unlikely to mark the boundary in the same way,
this process is highly subject to inter-observer variation. What’s
more, the high complexity of muscle fiber images makes it very
difficult, if not impossible, to extract morphological features such as
areas, diameters, and elongations. Therefore, there is an urgent need
to develop a computerized analysis approach to model and quantify
muscle fiber images as part of an overall more efficient and effective
process to find new treatments.

To process and analyze complex images like cross-sections of
muscle fibers, several steps are generally required, including pre-
processing, segmentation, and morphological analysis. Pre-processing
aims to correct uneven illumination of the images, remove artifacts,
and improve image contrast. Segmentation typically focuses on
identifying valid objects or extracting signal components from the
background. Over the years, many segmentation methods have been
proposed to suit various scenarios of image processing. In general,
segmentation methods can be categorized as global thresholding or
pixel-wise classification. Representative global threshold techniques
include Ostu’s method [2] that maximizes inter-class variance of the
segmentation results, and k-means segmentation [3] that clusters
pixels into two classes such that each pixel belongs to the nearest
cluster. Pixel-wise segmentation techniques include watershed seg-
mentation [4], active contours [5], and graph cut [6], and their
variations and improvements. For example, to overcome its well
known over-segmentation problem, many techniques have been
developed to restrain the watershed process by placing seed points
into regions to limit the number of final partitions [7]. Active contour-
based methods minimize an energy function that includes both
internal energy that constrains the deformation of the contour in
terms of its first and second order derivative, and external energy that
is minimized when the contour deforms to the boundary of the
object, e.g., a high gradient value is encountered. These methods,
however, may cause leakage in deformation when there are no
obvious gradient changes in the images. An improvement is made
by the Chan–Vese model that detects objects whose boundaries are
not clearly defined by their gradients by minimizing an energy
function set up as a minimal partition problem [8] Graph cut is
another type of energy minimization approach to segment an image
into the foreground and background by searching for a max flow/min
cut partition of the image into two disjoint sets, such that the
dissimilarity between the two sets, measured as the weight of edges
that have been removed, is minimized [9]. In many cases, segmenta-
tion of an image is set up as an optimization problem that searches
for a solution to achieve a balance between a data fidelity term and a
pre-set term that constrains the segmentation result. For example,
an area-constrained segmentation method has been proposed by
Niethammer and Zach for soft selections of segmentation solutions
that counteracts the effect of shrinking bias encountered in many
techniques [10]. Bergeest and Rohr developed a segmentation tech-
nique based on active contours by using level sets and convex energy
functional, i.e., the functional has only one a minimum to reach a
global solution that avoids local minima [11].

After segmentation, post-processing is often employed to
quantify the results and extract morphological features that are
of biological and medical significance. For instance, in muscle fiber
analysis, the number of muscle fibers in a unit area and the
perimeters and areas of muscle fibers are often used to evaluate
the health status of the muscle as well as to identify the type of
muscle fibers, e.g., degenerative or regenerative. In identifying
muscle fiber centers, Liu et al. proposed a learning-based method
to find the geometric centers of muscle fibers and then used a
snake model to obtain the boundaries [12]. Mula et al. developed a
multiple step approach to first enhance the boundaries of muscle
fibers and then search for seed points inside each fiber to drive a
deformable model to delineate each fiber [13].

In this paper, we present an image processing approach that is
able to segment cross-sections of muscle fibers in very challenging
cases and extract quantitative features for in-depth analysis, the
aim of which is to provide computer-aided measurements of
morphologies of muscle fibers for researchers to use to develop
novel insights on the cellular mechanisms of musculoskeletal
diseases. Ultimately, they will be able to more objectively evaluate
their experimental approaches and reduce the time needed to
analyze large numbers of muscle fibers acquired in experiments.

2. Materials and methods

2.1. Animals and experimental treatment

Animal experiments were carried out under the guidance and
approval of the Institutional Animal Care and Use Committee of
Harvard Medical School. Male mdx mice at the age of 4–8 weeks
were purchased from Jackson Lab. To assess how many of the
myoblasts might survive post transplantation, the mice were
transplanted with wild type myoblasts from C57BL6 mice to assess
how many of the myoblasts might survive post transplantation. In
preparation for myoblasts transplantation, the hind legs of the
mice were given 18 Gy irradiation 3 days in advance. Then 1�105

myoblasts suspended in 10 μl HBSS (Hank’s Balanced Salt Solution)
were injected into each tibialis anterior (TA) muscles at 3 positions.
The mice were then maintained for various periods of time before
they were euthanized for tissue harvest. The mice were fed with
standard pelleted rodent chow and kept in a 12-h light/12-h
dark cycle.

2.2. Histology and image acquisition

When the TA muscles were harvested, the mice were deeply
anesthetized by intraperitoneal injection of Ketamine (100 mg/kg)
and Xylazine (10 mg/kg) and then intracardially perfused with
physiological saline and periodate/lysine paraformaldehyde (4%)
solution. After postfixation and dehydration, the muscles were frozen
in OCT embedding compound and sectioned coronally at 12 mm
thickness from the mid-portion of the muscles. For immunohisto-
chemistry, slides were washed with PBS (Phosphate Buffered Saline)
and blocked with 5% goat serum, and muscle sections were incu-
bated with a rabbit anti-dystrophin antibody (Sigma, 1:500) followed
by incubation with a goat-anti-rabbit Cy3-conjugated secondary
antibody (Jackson Lab, Bar Harbor, ME, USA). The images used were
acquired by an Olympus IX-70 microscope equipped with a CCD
(Charge-Coupled Device) camera. A single image typically has a size
of 800�600 pixel, with a pixel size of 0.7 mm. Approximately 20 to
30 images were collected with a slight overlap in four directions to
cover the whole cross-section of the TA muscle. The individual
images were then merged to form a mosaic picture.
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