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Abstract: Circulating tumor cells (CTCs) are known to be a harbinger of cancer metastasis. The CTCs are
known to circulate as individual cells or as a group of interconnected cells called CTC clusters. Since both
single CTCs and CTC clusters have been detected in venous blood samples of cancer patients, they needed
to traverse at least one capillary bed when crossing from arterial to venous circulation. The diameter of a
typical capillary is about 7 mm, whereas the size of an individual CTC or CTC clusters can be greater than
20 mm and thus size exclusion is believed to be an important factor in the capillary arrest of CTCs – a key
early event in metastasis. To examine the biophysical conditions needed for capillary arrest, we have
developed a custom-built viscoelastic solid–fluid 3D computational model that enables us to calculate,
under physiological conditions, the maximal CTC diameter that will pass through the capillary. We show
that large CTCs and CTC clusters can successfully cross capillaries if their stiffness is relatively small.
Specifically, under physiological conditions, a 13 mm diameter CTC passes through a 7 mm capillary only if
its stiffness is less than 500 Pa and conversely, for a stiffness of 10 Pa the maximal passing diameter can
be as high as 140 mm, such as for a cluster of CTCs. By exploring the parameter space, a relationship
between the capillary blood pressure gradient and the CTC mechanical properties (size and stiffness) was
determined. The presented computational platform and the resulting pressure–size–stiffness relation-
ship can be employed as a tool to help study the biomechanical conditions needed for capillary arrest of
CTCs and CTC clusters, provide predictive capabilities in disease progression based on biophysical CTC
parameters, and aid in the rational design of size-based CTC isolation technologies where CTCs can
experience large deformations due to high pressure gradients.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The presence of circulating tumor cells (CTCs) indicates that the
process of blood-borne cancer metastasis has already been
initiated [1,2]. Numerous technologies [3] (e.g. microfluidic
devices [4,5]) have been employed to isolate the rare CTCs from
blood samples of cancer patients, usually obtained from venous
blood draws. Several studies have also shown that the presence of
CTC clusters in the circulation potentially plays an important role
in metastasis [6–9]. CTCs or larger CTC clusters generally need to
traverse: (1) venous drainage of the tumor leading to the right side
of the heart followed by passage through the pulmonary capil-
laries leading back to the heart; (2) then from the left heart to the
distal small arteries in the hand followed by passage through the

distal hand capillary bed leading to venous side of the arm. This
implies that not one, but two capillary beds may need to be
crossed by the CTCs and CTC clusters. The typical diameter of a
capillary is around 7 microns (although the range can be from
5–10 microns) [10,11], whereas an individual CTCs can be as large
as �20 mm and the CTC clusters can be much larger, on the order
of 100 mm [4,5,12]. Based on this considerable size difference, it
has been postulated that the larger size of CTCs prevents them
from passing through capillaries [13], implying that size restriction
plays an important role in cancer metastasis [13,14]. The arrest of
CTCs in capillaries is believed to be a key part of the metastatic
process, as the step prior to their extravasation and subsequent
growth in the surrounding tissues [14,15]. Additionally, in certain
blood cancers, such as acute leukemia, a very large number of
cancer blood cells can exist in blood due to uncontrolled prolifera-
tion of myeloid or lymphoid lineage cells. This situation can then
precipitate the onset of leukostasis – a poorly understood condi-
tion where cancer cells aggregate within the vasculature and cause
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grave clinical symptoms [16–18]. In the above cases, the arrest of
the CTCs or CTC clusters as well as large leukemic cells in
capillaries is mainly dictated by two mechanisms: (1) the interac-
tion of the cells with the vasculature, which we term as the
biochemical component and (2) the size and mechanical proper-
ties of the cells coupled to the local fluid conditions, termed the
biophysical component. Although there has been considerable
focus on the former [14,15], the effect of the latter, biophysical
component, is not well understood.

We here present a custom-built computational platform that
allows us to determine how a large visco-elastic solid (CTC)
deforms and passes through a smaller-sized narrowing (micro-
vessel). The platform is finite-element based, and we introduce a
strong-coupling method that enables direct coupling of the solid
properties (e.g. stiffness) to the fluid conditions (e.g. pressure) in
order to solve for the resulting deformations. With this customized
approach we examine the biophysical conditions needed to allow
large-diameter CTCs to pass through a typical 7 mm capillary. The
computational model reveals a simple relationship between the
three key biophysical parameters: (1) CTC diameter, (2) CTC
stiffness, and (3) fluid (blood) pressure gradient across the
capillary. Our analysis spans several orders of magnitude for cell
diameter and stiffness, and offers predictive capability about what
kind of CTC (e.g. size) may be arrested in the microvasculature
under physiological conditions. The pressure–size–stiffness rela-
tionship reveals that, for a given pressure, cell stiffness strongly
affects the maximal cell size that can pass into the capillary. We
have found that, under physiological conditions, even a very large
cell or a cluster of cells (�100 mm diameter) can pass only if its
stiffness is very small (�10 Pa), and conversely a CTC whose
stiffness is 1000 Pa will be arrested in the capillary if its diameter
is greater than 12 mm. Taken together, the computational results
and derived biophysical relationship provide a tool to better
understand how large CTCs go through smaller-sized capillaries;
this is central not only for cancer metastasis but also for size-based
CTC isolation technologies where CTCs can experience large
pressure gradients [19].

2. Methods

In order to develop a computational model of an incompres-
sible solid (cell) going through a smaller-sized narrowing (capil-
lary) we had to address the following two challenging issues:
(1) to model solid–fluid interaction with motion of the deformable
solid within the fluid, and (2) to model solid–solid interaction with
large relative displacements of the interacting surfaces as well as
to model large deformations of the incompressible solid. We here
summarize the basic relations and steps involved in addressing
these issues.

2.1. Fundamental relations

For the fluid, we have the basic equations of balance of linear
momentum, known as the Navier–Stokes equations:
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where ρf and pf are density and pressure of the fluid, respectively,
μ is the viscosity, f f Vi are the volumetric forces, and vi are fluid
velocities. We consider an incompressible fluid (water), hence, the
continuity equation is expressed as

div vð Þ ¼ ∂vi=∂xi ¼ 0 ð2Þ
Using a standard Galerkin procedure [20], Eqs.(1) and (2) can be

transformed into the finite element (FE) incremental-iterative
algebraic equations (corresponding to one FE):
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where Vf are velocities of FE nodes (Vt
f is the velocity at the start of

the time step), Pf is the pressure of the element (we use a constant
pressure assmmption for the element), and Fextf are external nodal
forces, which include actions of other elements; Δt is the time
step size, and ‘i’ is the equilibrium iteration counter. The explicit
expressions for the element matricesMf , Kvv and Kvp can be found
elsewhere [20].

For the solid, treated as incompressible, we adopt the approach
analogous to the one generally used for modeling incompressible
elastic or inelastic material deformation [21,22]. The stress tensor
σij can be decomposed into the deviatoric stress σ'ij and the mean
stress p,

σij ¼ σ0
ijþp ð4Þ

p¼ σ11þσ22þσ33ð Þ=3 ð5Þ

Then, differential equations of balance of linear momentum can be
written in the form:
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where ρs is the solid density, ui are displacements, and f sVi are
volumetric forces. Further, we use deviatoric strains e0ij,

e0ij ¼ eij�δijev=3 ð7Þ

where ev ¼ e11þe22þe33 is the volumetric strain, and δij is the
Kronecker delta symbol. Elastic constitutive relations can be
written as

σ0
ijE¼ 2Ge0ij ð8Þ

where σ0
ijE are elastic deviatoric stresses, and G is the shear

modulus. In order to treat the solid as viscoelastic, we employ
linear viscoelastic relations,

σvE
ij ¼D

∂eij
∂t

ð9Þ

where σvE
ij are viscoelastic stresses, and D is the damping coeffi-

cient. The incompressibility condition has the same form as for the
fluid (Eq. (2)).

Using the principle of virtual work, the above fundamental
equations for the solid can be transformed into equations of
balance for a solid finite element:
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where VðiÞ
s are nodal velocities, Ps is the mean stress of the element

(assumed constant over the element, as for the fluid), and Fint are
the internal element forces, corresponding to stresses. Details
about element matrices and derivations of this equation can be
found in [20,23].
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