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A B S T R A C T

This paper studies an optimal portfolio selection problem under a discrete-time Higher-Order Hidden Markov-
Modulated Autoregressive (HO-HMMAR) model for price dynamics. By interpreting the hidden states of the
modulating higher-order Markov chain as different states of an economic condition, the model discussed here
may incorporate the long-term memory of economic states in modeling price dynamics and optimal
asset allocation. The estimation of an estimation method based on Expectation-Maximization (EM) algorithm
is used to estimate the model parameters with a view to reducing numerical redundancy. The asset allocation
problem is then discussed in a market with complete information using the standard Bellman's principle and
recursive formulas are derived. Numerical results reveal that the HO-HMMAR model may have a slightly better
out-of-sample forecasting accuracy than the HMMAR model over a short horizon. The optimal portfolio
strategies from the HO-HMMAR model outperform those from the HMMAR model without long-term memory
in both real data and simulated data experiments.

1. Introduction

Asset allocation is one of the key research topics in financial
economics. The seminal work of Markowitz (1952) pioneered the use of
mathematical models to study the problem. Though being one of the
classic models in modern finance, the Markowitz mean-variance portfolio
selection model is a one-period model which may not be able to provide a
flexible way to describe the situation where investors update investment
decisions over time. A continuous-time asset allocation paradigm pio-
neered by Merton (1969, 1971) provides a solid theoretical basis to study
how economic agents optimize their portfolios continuously over time.
Instead of optimizing the mean-variance relationship, Merton considered
the maximization of an expected utility. A closed-form expression for an
optimal portfolio was derived under the assumptions of a Geometric
Brownian motion for asset prices and a power utility. Though its
theoretical soundness, the Merton asset allocation model does not seem
to be very appealing from the econometric perspective. Indeed from the
econometric perspective, it seems more convenient to consider a discrete-
time optimal asset allocation model than its continuous-time counterpart
since the estimation of the former may be easier than the latter given real
financial data. Samuelson (1969) considered an optimal consumption-
investment problem in a discrete-time modeling framework, where the

objective was to maximize the expected consumption. Grauer and
Hakansson (1982) considered an optimal asset allocation problem in a
discrete-time financial model.

It seems quite well-known that, structural changes in economic
conditions or political regimes indispensably result in a dramatic change
in the financial market. A possible way to incorporate the changes in
economic conditions or political regimes in strategic asset allocation is to
consider time-varying optimal investment problems, such as Kim and
Omberg (1996) and Campbell and Viceira (2002). In the past few decades,
there has been some interest in the application of regime-switching
models in economics, finance and econometrics. These models take
account of the impact of transitions in macroeconomic conditions.
Hamilton (1989, 1990) pioneered the applications of discrete-time,
Markovian regime-switching models in economics and econometrics. As
for asset allocation problems, one may consult Elliott and van der Hoek
(1997), Ang and Bekaert (2002), Yin and Zhou (2003), Zhou and Yin
(2004), Guidolin and Timmermann (2007), Yiu et al. (2010) and Song
et al. (2012), etc. Elliott and Siu (2014) discussed a mean-variance utility
optimization problem and its corresponding filtering problem in a
fractional Gaussian process from which a hidden Markov chain is partially
observed. Long-term memories in asset returns are incorporated by the
fractional Gaussian noise process.
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The above models employ Markov chains to describe the macro-
economic states. In particular, the Markov-switching autoregressive
time series model for optimal asset allocation has been studied by
Guidolin and Timmermann (2007). Nevertheless, financial time series
are observed to have memories. Cajueiro and Tabak (2008) demon-
strated the long-range dependence in LIBOR and US interest rates.
McCarthy et al. (2009) investigated long memory in corporate bond
yield spread. Higher-order hidden Markov model, where the next state
in the Markov chain depends on the more prior states may provide a
possible way to incorporate long memory in economic states. This idea
has received increasingly attention in recent years. For example, Xi and
Mamon (2011) analyzed an asset price model driven by a weak hidden
Markov chain. Siu et al. (2009) examined the higher-order effect of a
risky portfolio and investigated its risk measurement under higher-
order hidden Markov model. Ching et al. (2007) explored pricing of
exotic options with the Esscher transform under higher-order Markov
assumption. Siu et al. (2005) applied a double higher-order hidden
Markov chain model to estimate the hidden state of an economy using
credit ratings and interest rates. For higher-order autoregressive
hidden Markov models, more information from the past is included
and theoretically this dependency could be extended to any value. The
limitation is that estimation of parameters becomes more complicated
as the enlargement of the states. For the first order hidden Markov
model, such procedures were discussed in Rabiner (1989). However,
when it comes to higher-order cases, few generalizations have been
developed. Readers may refer to, for example, du Preez (1998), Ching
et al. (2008), Ching et al. (2013) and Hadar and Messer (2009) for
efficient computation ideas.

In this paper we discuss an optimal portfolio selection problem in a
partially observed system. The price process of a risky asset is
described by a discrete-time Higher-Order Hidden Markov-
Modulated Autoregressive (HO-HMMAR) model. The rationale behind
the model is to incorporate the impact and long-term dependence of
changing hidden economic states on the price process. Based on the
simple and elegant method proposed by Hadar and Messer (2009), we
present an efficient approach to reduce numerical redundancy in
optimally estimating parameters in higher-order models. Then we
consider the optimal asset allocation problem by maximizing the
expected power utility of terminal wealth. Using the standard
Bellman's principle, we derive the corresponding recursive formulas
for computing optimal trading strategies. Numerical experiments
illustrate the implementation of the algorithm. Taking two risky assets,
namely the S & P 500 index and the gold, into account, we make future
predictions and compute the optimal strategies. Results suggest that
the HO-HMMAR model may have a slightly better predicability than
the 1-HMMAR model over a short forecasting horizon, say a one-day
horizon. As for the wealth performances, the HO-HMMAR model
outperforms the 1-HMMAR model in both real and simulated data.
The results also reveal that the optimal trading strategies seem to be
sensitive to the choices of the risk averse parameter. An advantage of
the HO-HMMAR model seems to be that it reacts more quickly and
moderately to switches in market regimes based on either a single-step
expected power utility or recursive formulas.

The rest of the paper is structured as follows. The next section
presents the Higher-Order Hidden Markov-Modulated Autoregressive
(HO-HMMAR) model. The estimation method is then discussed in
Section 3. In Section 4, we present the optimal asset allocation problem
and derive the recursive formulas for computing the optimal portfolio
strategy. Numerical experiments are presented in Section 5. Out-of-
sample predictions and performances of optimal strategies under the
HO-HMMAR models with different orders are discussed. Finally,
concluding remarks are given in Section 6.

2. Discrete-time Higher-Order Hidden Markov-Modulated
Autoregressive (HO-HMMAR) model

In this section, we present a discrete-time HO-HMMAR time series
model for the price dynamics of several correlated risky assets. We
assume that the hidden state sequence X{ }t is a discrete-time, homo-
geneous hidden Markov chain of order r defined on a complete
probability space Ω F( , , ) with state space being a finite state set ,
i.e., a stochastic process that satisfies

P X X P X X( |{ } ) = ( |{ } )t l l t t l l t r
t

≤ −1 = −
−1 (1)

Here the transition probability P X X( |{ } )t l l t r
t
= −
−1 is independent of current

time t, and Xt takes a value in . The states of the chain are interpreted
as different states of the hidden economy.

For each t T∈ , where T is the set of non-negative integers, let r t( )
be the one-period risk-free interest rate of the money market account,
where r t( ) > 0. Suppose r t r 1( )≔ n X n{ = }t where rn is interest rate when
the hidden state of the economy is in the nth state. Suppose there is a
market in which (m + 1) assets (or securities) are traded. One of the
assets is a riskless bond whose evolution is governed by

B t B t r t( ) = ( − 1)(1 + ( )).

The prices of the m assets are denoted by P t P t P t( ), ( ),…, ( )m1 2 and the
log returns of these assets from time t − 1 to t are represented as

S t P t P t i m( ) = ln( ( )/ ( − 1)) ∈ {1, 2,…, }.i i i

The return processes S t{ ( )}i i
m
=1 are assumed to follow the HO-HMMAR

model:
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where t{ϵ ( )}j j
m
=1 is a set of m independent and identically distributed

(i.i.d.) standard normal random variables. Here q t{ ( )}j j
m
=1 is a set of

autoregressive orders taking values in the set of non-negative integers.
Specifically, μ t β t( ), ( )i i

j and σ t( )ik i k m(1 ≤ , ≤ ) are assumed to be
functions of X X X, ,…,t t t s−1 − +1:
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Here n denotes the state ensemble of X X X, ,…,t t t s−1 − +1 and 1E is the
indicator function of an event E. Hence the observable return processes
S t{ ( )}i i

m
=1 are generated by a joint probability distribution associated

with the previous qi(t) terms of return processes S t{ ( )}i i
m
=1 and the

previous s states of the hidden chain X{ }t .
To illustrate our model, the following notations are required:

1. | |r+1 transition probabilities,

a P X n X n X n= ( = | = ,…, = ).n n t t t r r, …, 0 −1 1 −r0 (3)

2. | |s observation probability distributions,

b S P S X n X n( ) = ( | = ,…, = ).n n t t t t s s, …, 0 − +1 −1s0 −1 (4)

3. | |ν initial state probabilities,

π P X n X n X n= ( = , = ,…, = ).n n n ν, …, 0 1 −1 2 1−ν ν1 (5)

Here ν r s= max{ , } and n n n, ,…, ∈ν0 1 . We denote the set of all model
parameters by λ, i.e.,
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