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a b s t r a c t

In this work, two novel background correction (BC) methods, along with several commonly used ones,

are evaluated regarding noise reduction in eleven two-channel self-versus-self (SVS) hybridizations.

The evaluation of each BC method is investigated under the use of four statistical criteria combined into

a single measure, the polygon area measure. Overall, our proposed BC approaches perform very well in

terms of the proposed measure for most of the cases and provide an improved effect regarding

technical noise reduction.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

DNA microarrays represent a fairly recent, yet powerful high-
throughput technology, allowing the simultaneous measurement
of the expression levels of thousands of genes in a single
experiment. Maturation of the printing technologies enables
nowadays full coverage of an organism’s genome within a slide,
thus alleviating costs and reducing batch related noise. There are
numerous variations regarding DNA microarrays experimental
implementation, yielding numerous technical protocols, which
can generally be categorized in single channel and double channel
experiments, regarding popularity of use, though there are
experimental implementations entailing a larger number of dyes.
Regarding two-channel microarrays, their analysis encompasses
various steps, which are summarized in the following scheme.
The collection of biological material represents the starting step, a
stage encompassing RNA isolation and labeling with fluorescent
dyes (i.e. Cy3, Cy5) excited at different wavelengths. The next step
is that of hybridization with the reporters fixed on the surface of
the microarray slide, followed by that of image acquisition, where
two independent images, each one corresponding to a specific
dye, are generated. These images are then segmented in order to
identify the arrayed features, and to measure the relative hybri-
dization intensities in a pixel–by-pixel basis for each channel

from which subsequently comparative gene expression is inferred
through comparison of channel values.

Most DNA microarrays software, commercial or freely distrib-
uted, provides a variety of summary statistics outputs per channel
and feature (usually Green (Cy3) for the reference sample, and
Red (Cy5) for the treated sample), encompassing estimates of
total intensity, the mean and median of the pixel intensity
distribution (foreground intensity), as well as an estimate of
these for the local background (background intensity) [1]. Among
these, the median intensity values tend to be more popular, since
they represent a robust measure of central tendency of the data
(especially when compared to the mean which is sensitive to the
presence of outliers) [2]. In each channel, the foreground inten-
sities fR and fG represent estimates of the specific binding of the
labeled mRNA to the spotted reporters, whereas the local back-
ground intensities, bR and bG, comprise measures of the infiltrat-
ing noise in each channel, which encumbers the interpretation
procedure.

The sources of this noise are multiple and varying in nature,
like (i) fluorescence radiation due to non-specific hybridization,
(ii) over-shining (fluorescence from neighboring features), or
(iii) technical imperfections throughout various stages of the
experimentation (like incomplete washing after hybridization,
undesired noise due to laser over-excitation of the fluorescent
dyes, scanner operation close to its saturation phase, or impreci-
sion in feature segmentation during image analysis) [3–5]. It is
thus important for the definite interpretation of the experiment
that an accurate estimate of the background noise is derived for
the scope of the correction of the foreground intensities and the

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/cbm

Computers in Biology and Medicine

0010-4825/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.compbiomed.2011.10.003

n Corresponding author. Tel.: þ30 210 7273751; fax: þ30 210 7273758.

E-mail address: achatzi@eie.gr (A.A. Chatziioannou).

Computers in Biology and Medicine 42 (2012) 19–29

www.elsevier.com/locate/cbm
www.elsevier.com/locate/cbm
dx.doi.org/10.1016/j.compbiomed.2011.10.003
mailto:achatzi@eie.gr
dx.doi.org/10.1016/j.compbiomed.2011.10.003


most accurate possible signal estimation of the expression of the
transcripts. Noteworthily, a systematic evaluation of the impact
of the background noise-correction estimating methodologies
remains elusive despite its potentially critical role as regards
the biological interpretation and validation of the experimental
results.

The most usual approach for background correction (BC) is
based on an additive background noise model. Specifically, this
model assumes that any foreground intensity is the sum of two
components [6], one representing latent true gene expression,
and the other representing background noise. The true unknown
gene expression is assumed to increase proportionally with the
true gene concentration (in the corresponding sample), while the
background noise is assumed to be mathematically independent
of it. Moreover, it is assumed that true gene expression and
background noise are additive and probabilistically independent.

Extrapolating from the additive background noise model, the
local background subtraction (LBS) method utilizes the feature
background estimates in each channel, bR and bG, and directly
subtracts them from the foreground intensities, fR and fG, respec-
tively. However, this conventional method produces very often,
feature intensity distributions with undesirable statistical proper-
ties. For example, in cases where the background intensities are
measured larger than the corresponding foreground ones (i.e. in
presence of local background artifacts), then non-positive back-
ground-corrected intensities are produced (the production of
negative background-corrected intensities is nonsensical and
suggestive of a flaw in using local background to estimate
nonspecific hybridization, as characterized by Brown et al. [4]),
leading to missing log-ratios for a rather nontrivial number of
features. Besides, even in the case where local foreground inten-
sities are larger than the local background estimates, background
subtraction tends to pile together feature measurements with
extremely different qualitative characteristics, i.e. considering
two-channel signals, where the local foreground intensities have
been measured 100 and 1000, whereas the local background ones
50 and 950, respectively. Then by applying the additive approach,
we would have for both cases that their expression is equal,
namely 50. What seems to elude in this approach is an assess-
ment of the quality of the measured signal, where in the former
case the signal is two times the background, whereas in the latter
it is just 5% over the background level (1.0526). By taking into
consideration the variation of noise, which in microarray experi-
ments is pretty high (far more than 20%), it can be easily
conjectured that the latter estimate represents an artifact. More-
over, as the subsequent stages of microarray analysis are built
upon these results, this leads to a heavy distortion of the total
signal population. Henceforth, the statistical techniques used are
incapable of dealing with the problem of the potentially massive
introduction of artifact values.

Therefore, the LBS approach generates highly variable, low
intensity, feature values (appearing as so-called ‘fishtail’ or ‘fan’
patterns in the scatter plots of log-ratios versus the average of log
intensities), as pointed out by many researchers [7–10]. All these
facts ground a pinpointed skepticism regarding the widespread use
of the LBS correction method, and stress the necessity of tackling
the problem of background correction in alternative fashions.

An alternative to the LBS method is the constant background
subtraction (CBS) approach. Instead of subtracting local back-
ground estimates for each feature, a global background is esti-
mated and subtracted for all features. This global background may
be estimated either by a set of negative control features or by a
percentage of all feature foreground intensities [7,11]. However,
not all microarray platforms support negative control features,
whereas the selection of the percentage threshold is a rather
empirical one, based on case-specific assay of each slide and

channel. As it was already explained for the LBS method, a critical
limiting factor for the CBS approach is the fact that background
signal distributions in microarray experiments can be pretty
inhomogeneous, due to intensity dependencies, originating directly
from the experimental technology applied.

Another approach, recommended by many researchers
[7,8,12,13] is rather to use uncorrected (no background correction
altogether—NBC) compared to local background subtracted fore-
ground feature intensities. The approach is suggested as a better
option, since NBC does not depend on potentially problematic
background estimates, while allegedly it is resilient with respect
to low intensities [13]. On the other hand, NBC reduces the ability
to identify differentially expressed genes [7,11], while it is
severely underperforming in cases where significant spatial
artifacts are encountered, induced only in one channel [13].

More sophisticated image approaches incorporate the utiliza-
tion of morphological features, like for instance the morphological
opening (MO), which appears in Spot software (CSIRO, North
Ryde, Australia, publicly available at http://www.hca-vision.com/
product_spot.html), and is a non-linear filter. According to [7,11],
MO provides a better balance in the bias-variance trade-off when
compared with LBS, CBS, and NBC, while at the same time,
enhances the identification of differentially expressed genes by
increasing the magnitude of t-statistics. Another approach of this
category is the TVþL1 model developed by Yin et al. [14], which is
also a non-linear filter. The proposed model estimates closer
background-corrected intensity to the true foreground signal,
when compared with MO. However, despite the enhanced per-
formance of these non-linear filters, there are few individual
limitations and disadvantages of each algorithm [14]. Moreover,
from the technical point of view, such non-linear filter approaches
are extremely demanding computationally when compared to
other methods. But more importantly, they fail providing a
functional interface with usual (commercial or freely distributed)
microarray analysis software, and consequently, in most cases,
are unavailable for the processing of DNA microarray data, which
averts their widespread incorporation to DNA microarray analysis
pipelines.

In order to avoid the defects induced by straightforward
subtraction of raw background intensities, other BC methods are
proposed. Like log-linear interpolation [15], empirical Bayesian
modeling based on the additive nature of background noise [16],
or model-based methods of stabilizing variance, incorporating
additive components [17,18]. Smyth [9] (limma software) adapts
the BC approach originally introduced by Irizarry et al. [19] for
Affymetrix data for use with two-channel microarrays. Silver et al.
[20] further develop the normal-exponential convolution model
(normexp) by improving the estimation of its parameters.
Schutzenmeister and Piepho [21] propose local background
smoothing with either 2D locally weighted regression or ordinary
kriging using an isotropic model of spatial correlation prior to
applying a BC algorithm. Argyropoulos et al. [22] derive an
approximation to the unknown distribution of the infiltrating
fluorescent using the method of maximum entropy, while utiliz-
ing it to estimate the magnitude of background noise by segment-
ing the image histogram and to correct individual pixels for the
presence of noise using the maximum likelihood estimator.

The multiplicative background correction (MBC), as proposed
by Zhang et al. [10], appears to be one of the simplest and most
promising strategies for BC. In contrast to the additive back-
ground noise model, MBC assumes that the background noise
affects the feature intensities in a multiplicative manner, a notion
fully complying with the perception of the experimentalist about
signal quality, emphasizing in the strength of the signal compared
to that of the noise. MBC represents a background correction
method, based upon the concept of the signal-to-noise ratio (SNR)
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