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A B S T R A C T

Stochastic volatility models with fixed parameters can be too restrictive for time-series analysis due to instability
in the parameters that govern conditional volatility dynamics. We incorporate time-variation in the model
parameters for the plain stochastic volatility model as well its extensions with: Leverage, volatility feedback
effects and heavy-tailed distributed innovations. With regards to estimation, we rely on one recently discovered
result, namely, that when an unbiasedly simulated estimated likelihood (available for example through a
particle filter) is used inside a Metropolis-Hastings routine then the estimation error makes no difference to the
equilibrium distribution of the algorithm, the posterior distribution. This in turn provides an off-the-shelf
technique to estimate complex models. We examine the performance of this technique on simulated and crude
oil returns from 1987 to 2016. We find that (i): There is clear evidence of time-variation in the model
parameters, (ii): Time-varying parameter volatility models with leverage/Student's t-distributed innovations
perform best, (iii): The timing of parameter changes align very well with events such as market turmoils and
financial crises.

1. Introduction

Ever since the contributions of Taylor (1986), Harvey et al. (1994)
and Kim et al. (1998), stochastic volatility (SV) models have been
increasingly used to model the volatility of financial and macroeco-
nomic time-series. In this framework, conditional volatility is modeled
as an unobserved process with an idiosyncratic error. Typically, we
assume that conditional log-volatility follows an autoregression of
order one, AR(1), which is a discrete time approach to the diffusion
process used in option pricing, see Hull and White (1987). Generally,
SV has proven to be more attractive than GARCH-type models
introduced in Bollerslev (1986), where conditional volatility is a
function of past squared innovations and conditional variances.
Jacquiera et al. (1994) find that compared to GARCH, SV yields a
more robust description of the autocorrelation pattern of the squared
returns. Kim et al. (1998) show that the SV model provides a better in-
sample fit than GARCH.

Typically, when we estimate SV models, we often find that the
filtered conditional volatility process is very persistent as indicated by
the estimated AR(1) coefficient close to one. We can argue that the
nearly unit root behavior of the conditional volatility process is due to
the failure of accounting for time-variation in the parameters that
govern it. We can overcome this issue by incorporating a dynamic
discrete latent state Markov process in the model such that volatility

parameters can switch from one state to another in either a recurrent
or non-recurrent fashion. Moreover, besides allowing for time-varia-
tion in the model parameters, we are also interested in enriching the
plain SV equation to allow for: Leverage, volatility feedback effects and
assuming a heavy-tailed distribution for the innovations, which are
important features of financial time-series, see for example, Koopman
and Uspensky (2002) and Chan and Grant (2016a). However, contrary
to GARCH-type models, considering these features is more difficult in
the SV framework due to several reasons. First, although conditional
log-volatility follows an AR(1) process, it enters the model in a
nonlinear fashion. Second, it cannot be observed resulting in an
intractable likelihood function. Third, from a practical point of view,
compared to the plain SV equation, incorporating leverage or volatility
feedback effects complicates model estimation even further, see Chan
and Grant (2016a). Finally, estimating time-varying parameter SV
models is even harder because they involve two hidden processes,
namely, the conditional volatility and the discrete Markov process.

In order to address these points, we provide a unified estimation
framework by modifying the particle marginal Metropolis-Hastings
(PMMH) sampler, see Andrieu et al. (2010) and Flury and Shephard
(2011). In this context, we rely on using two important results from the
aforementioned papers, namely, (i): For nonlinear state-space models
that cannot be estimated using the Kalman filter, we can decompose
the likelihood of the data, y T1: , conditional on the model parameters, θ,
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p y θ( | )T1: , through the predictive composition and use simulation to
unbiasedly estimate the likelihood contribution at time t, p y θ y( | , )t t1: −1 ,
t T= 1,…, , see Flury and Shephard (2011). Simulation from
p y θ y( | , )t t1: −1 can be carried out using a particle filter (PF). (ii): When
an unbiasedly estimated likelihood (for example from a PF) is used
inside a Metropolis-Hastings (MH) algorithm then the estimation error
makes no difference to the equilibrium distribution of the algorithm,
i.e. the posterior distribution, p θ y( | )T1: , allowing for exact inference
even when p y θ( | )T1: is simulated. We use (i) to generate the unobserved
(discrete) states, s T1: , from its conditional posterior. These states are
modeled using either m-state Markov switching or change-point
processes. (ii) is used to generate the model parameters within each
regime, θk, k m= 1,…, , through a MH step, replacing the exact
likelihood with its unbiased simulation based estimator from a PF. At
the same time, the estimation procedure automatically provides us with
the observed-data likelihood, which we use to compute the deviance
information criterion (DIC) of Spiegelhalter et al. (2002). DIC is then
used to choose the number of breaks and perform model comparison
within each specification.

We also demonstrate that our approach simplifies the estimation
procedure greatly. First, we do not need to condition on the latent
volatility process to generate the model parameters. Second, our
approach requires limited design effort from the practitioner's part,
especially if one desires to change some features in a particular model.
For instance, allowing for heavy tails, leverage and volatility feedback
effects requires minor modifications in the sampling algorithm. In each
case, we slightly modify the particle filter and augment θ to include
additional parameters without needing to make substantial changes in
the codes. Moreover, we can directly compare model fit using the
output from the estimation procedure through DIC. On the other hand,
performing the same tasks following Vo (2009) and Chan and Grant
(2016a) is more cumbersome. We must also mention that there are
other perhaps more computationally sophisticated alternatives to our
proposed framework. For instance, Kim (2016) proposes a particle
Gibbs algorithm that generates s T1: and the latent volatilities in one-
step through ancestor sampling, see Lindsten et al. (2014). Conditional
on these processes, model parameters are generated using standard
Gibbs sampling techniques. However, the approach of Kim (2016)
requires more knowledge about particle filtering (ancestor sampling
and partially deterministic sequential Monte Carlo) and computational
effort. Our approach, while computationally valid and efficient is based
on very simple ideas, namely, (i)–(ii). Furthermore, it requires only
basic knowledge of particle filtering, Metropolis-Hasting and compared
to papers such as Kim (2016) requires minor coding effort from the
practitioner's part. Thus, we can efficiently estimate SV models without
vast know how of simulation techniques.

One branch of applied econometrics where these techniques are
very useful is with regards to analyzing time-variation in the para-
meters that govern the conditional volatility of crude oil prices. There
are obviously several reason for this. For instance, for oil dependent
nations, where crude oil volatility plays an important role in economic
policy, unexpected volatility parameter shifts can imply huge losses
(gains) and thus lower revenues (higher revenues) with drastic negative
(positive) consequences on the economy. Being able to accurately
model crude oil volatility is also crucial for decision making and risk
management purposes1. Neglecting changes in the parameters that
govern conditional volatility dynamics can result in biased estimates

and thus poor forecasts, damaging investor's portfolio or exposing the
investor to unnecessary higher risk. Indeed, a large amount of research
devotes alot of attention to modeling the volatility of crude oil prices,
see for instance, Bina and Vo (2007), Narayan and Narayan (2007),
Fan et al. (2008), Hung et al. (2008), Agnolucci (2009), Kang et al.
(2009), Oberndorfer (2009), and Wei et al. (2010). Most of these
papers take a GARCH-based approach as compared to SV they are
simpler and less computationally demanding to estimate2. These
studies find that leverage, persistence and heavy-tailed distributed
errors are important features of crude oil volatility. Research also
concludes that allowing for time-variation in the parameters that
govern conditional volatility dynamics also plays an important role in
analyzing crude oil volatility, see Fong and See (2002), Fong and See
(2003), Alizadeh et al. (2008), Aloui and Jammazi (2009), Vo (2009),
Nomikos and Pouliasis (2011) and Arouri et al. (2012)3.

We provide both a methodological and an economic contribution.
From a methodological viewpoint, we contribute to the applied
literature by providing a flexible framework that accounts for changing
dynamics in the model parameters for a variety of SV-type processes.
To our knowledge, no other attempts have been made to model time-
varying SV models using our approach. From an economic view point,
we investigate the relevance of time-variation in the model parameters
in modeling and forecasting the conditional volatility of crude oil
prices. This part is broadly related to Vo (2009). However, our
approach is more general. First, we condition on both recurrent and
non-recurrent regimes and determine, which technique provides the
best fit. Second, we allow our SV models to accommodate more
complex features. Our analyses are carried out in three phases. First,
we present our algorithm. Second, we illustrate its properties and DIC
computation on simulated time-series. The final phase provides poster-
ior parameter estimates and forecast results.

The remaining of this paper is as follows: Stochastic volatility
models are introduced in Section 2. Parameter instability is discussed
in Section 3. Bayesian estimation is detailed in Section 4. Sections 5
and 6 present simulation and empirical results. The last section
concludes. Appendices at the end of the paper provide details on a
simple particle filter and a prior sensitivity analysis.

2. Stochastic volatility

We start with a brief discussion on the plain stochastic volatility
model, which serves as the building block for other, more complex
models within this family. We then move on to present several
extensions. In Section 3, we incorporate time-variation in the model
parameters that govern conditional volatility dynamics. The plain
stochastic volatility (SV) model is given as

y μ γ h ε ε N= + exp( /2) , ∼ (0, 1)t t t t (2.1)

h ϕh ση η N= + , ∼ (0, 1).t t t t+1 (2.2)

Here, yt is the observed return at time t and h h h= ( ,…, )′T T1: 1 are the
unobserved log-volatilities, which follow (2.2). The parameter, γ ≥ 0, is
the average level of volatility. The remaining parameters in (2.1)–(2.2)
are ϕ and σ, which denote the persistence and the conditional volatility
of volatility, respectively. We follow Kim et al. (1998) and impose that
ϕ < 1, with the initial condition, h N σ ϕ∼ (0, /(1 − ))1

2 2 . We also

1 It is well-established that oil price fluctuations influence aggregate economic activity
and stock markets, see Hamilton (1983), Jones and Kaul (1996), Ciner (2001), Cologni
and Manera (2008), Lardic and Mignon (2008), and Narayan et al. (2014). At the sector
and individual firm levels, the reaction of returns to oil price changes is found to be
heterogeneous, see Boyer and Filion (2007), Nandha and Faff (2008), Arouri and Nguyen
(2010), Narayan and Sharma (2011) and Phan et al. (2015). We also refer the reader to
Narayan et al. (2013) where it is shown how investors can use information on the futures
market's ability to predict spot prices to devise trading strategies and obtain profits.

2 Sadorsky (2005), Trolle and Schwartz (2009), Vo (2009), Larsson and Nossman
(2011), Brooks and Prokopczuk (2013) and Chan and Grant (2016a) are the relatively
few papers that study crude oil volatility using SV models.

3 These papers combine GARCH and SV model with Markov-switching dynamics. On
the other hand, Ewing and Malik (2010), Kang et al. (2011), Arouri et al. (2012) and
Salisu and Fasanya (2013) use the same framework as Wilson et al. (1996), i.e. they first
identify the break dates using techniques such as the ICSS algorithm of Inclán and Tiao
(1994) or tests introduced in Narayan and Popp (2010) and Narayan and Liu (2015).
They then incorporate them in the model by specifying dummy variables in the
conditional mean/volatility equations.
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