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A B S T R A C T

This paper proposes a semiparametric partially linear varying coefficient spatial autoregressive model, which is
a generalization of standard spatial autoregressive model and partially linear spatial autoregressive model. To
estimate the unknown spatial lag parameter, constant coefficients and coefficient functions, a profile quasi-
maximum likelihood approach based on the local-linear method is introduced. To test the existence of the
spatial effects, a generalized likelihood ratio test statistic is proposed, and a residual-based bootstrap procedure
is used to derive the p-value of the test. Some simulations are conducted to examine the performance of our
proposed procedures and the results are satisfactory. Furthermore, a real-world example is given to
demonstrate the application of the proposed procedures.

1. Introduction

Spatial econometrics is a subfield of econometrics that deals with
the incorporation of spatial effects in econometric methods. Two broad
classes of spatial effects may be distinguished, referred to as spatial
dependence and spatial heterogeneity, see Anselin (1988) and Lesage
and Pace (2009) for details. One useful approach to deal with spatial
dependence is the spatial autoregressive model, which adds a weighted
average of nearby values of the dependent variable to the base set of
explanatory variables. The traditional spatial autoregressive model is
very attractive due to its simplicity in estimation and interpretation,
inference and application of this model can be found in Cliff and Ord
(1973); Anselin (1988); Kelejian and Prucha (1999), and Lee (2004,
2007)). However, the parametric structure of spatial autoregressive
model is highly sensitive to model misspecification, so it may not be
adequate in many complex situations. To capture the underlying
relationships between the response variables and their associated
covariates, some nonparametric and semiparametric spatial autore-
gressive models have been proposed in recent years. Nonparametric
and partially linear spatial autoregressive model have been introduced
by Gress (2004). Su and Jin (2010) developed a profile quasi-maximum
likelihood estimation approach for partially linear spatial autoregres-
sive model, and studied the asymptotic properties of the proposed
estimators. Li and Mei (2013, 2016)) applied the generalized likelihood
ratio test method and the bootstrap procedure to test the nonpara-

metric component and the parametric component of the partially linear
spatial autoregressive models. Su (2012) studied a nonparametric
spatial autoregressive model that the spatially lagged response variable
enters the model linearly while the covariates enter the model
nonparametrically. Malikov and Sun (2015) proposed a flexible
semiparametric varying coefficient spatial autoregressive model in
which both spatial lag parameter and regression coefficients are
permitted to be nonparametric functions of some contextual variables
to allow for potential nonlinearities and parameter heterogeneity in the
spatial relationship. Sun (2016) studied a spatial varying coefficient
models with nonparametric spatial weights, which allows the data to
determine unknown spatial weights.

In this paper, we will propose a new semiparametric spatial
autoregressive model. The main motivation to propose the model is
to analyse the Boston housing data set, which was given in Harrison
and Rubinfeld (1978), corrected for a few minor errors by Gilley and
Pace (1996) and augmented with longitude and latitude by Pace and
Gilley (1997). The data set consists of the median value of owner-
occupied homes in 506 census tracts in the Boston Standard
Metropolitan Statistical Area in 1970, together with 13 related vari-
ables which might explain the variation of housing value. For this data
set, Fan and Huang (2005) proposed the following partially linear
varying coefficient model

β αY U ε i nX Z= + ( ) + , = 1, 2,…, ,i i i i i
T T (1.1)
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where Yi, X X X X= ( , ,…, )i i i ip1 2
T, Z Z Z Z= ( , ,…, )i i i iq1 2

T and Ui are the
observations of the response and associated explanatory variables.
β β β β= ( , ,…, )p1 2

T is a vector of p-dimensional unknown parameters
and α α α α(·) = ( (·), (·),…, (·))q1 2

T is a q-dimensional vector of unknown
functions, ε s′i are independent and identically distributed random
errors with zero mean and finite variance σ2. On the other hand, the
presence of both spatial dependence (also known as spatial autocorre-
lation) or spatial heterogeneity (also referred to as spatial non-
stationary) in the housing market has been emphasized by a large
numbers of literatures. Some type spatial autoregressive models were
applied to analysis the above dataset by Pace and Gilley (1997), Su and
Yang (2001) and Li and Mei (2016). Now, we combine the above two
types of models and build the following partially linear varying
coefficient spatial autoregressive model

∑ β αY ρ w Y U ε i nX Z= + + ( ) + , = 1, 2,…, ,i
j

n

ij j i i i i
=1

T T

(1.2)

where w i j nW = ( ), 1 ≤ , ≤ij is a specified n n× spatial weight matrix.
The definition of spatial weight matrix W is a fundamental issue in
using spatial econometrics method. They are based on the geographic
arrangement of the observations, or contiguity. Weights are non-zero
when two locations share a common boundary, or are within a given
distance of each other. More generally, W matrices can be specified
based on geographical distance decay, economic distance, the structure
of a social network, more examples can be found in Anselin (1988) and
Lesage and Pace (2009).

Model (1.2) is flexible enough to include a variety of existing
models. When α α(·) = , model (1.2) becomes the standard spatial
autoregressive model. When q=1 and Z = 1i , the model is the partially
linear spatial autoregressive model studied by Su and Jin (2010). When
X = 0i , the model is varying coefficient spatial autoregressive model.
When ρ = 0, the model reduces to the partially linear varying coeffi-
cient models, which was studied by Fan and Huang (2005) and have
been applied in many different applications, see Li and Racine (2007);
Cai et al. (2009); Cai and Xiong (2012); Sun et al. (2013); Wang et al.
(2009) and references therein.

In this paper, we consider the estimating and testing problem of the
model (1.2). Following Su and Jin (2010), combining the profile least-
squares approach of Fan and Huang (2005) for the standard partially
linear varying coefficient and quasi-maximum likelihood approach for
the traditional spatial autoregressive models, the profile quasi-max-
imum likelihood approach is introduced to estimate the unknown
spatial lag parameter, constant coefficients and coefficient functions of
model (1.2). The second question that we addressed is to test the
existence of the spatial effects. This leads to the following testing
problem

H ρ H ρ: = 0 VS : ≠ 0.0 1 (1.3)

For the standard linear spatial autoregressive models, likelihood ratio
test and Rao's Score (Lagrange Multiplier ) test can be applied for the
problem (1.3); details can be found in Anselin (1988). However, the
test problem (1.3) is a semiparametric hypothesis versus another
semiparametric hypothesis testing problem. Many traditional tests
cannot be directly applied to the above hypothesis. For this kind of
testing problem, Li and Mei (2016) applied the generalized likelihood
ratio (GLR) technique of Fan and Huang (2005) and Fan et al. (2001)
to the testing problems in the parametric component of the partially
linear spatial autoregressive models. Following Li and Mei (2016), we
develop the GLR test procedure for the testing problem (1.3) of model
(1.2).

The rest of this paper is organized as follows. In Section 2, the
profile quasi-maximum likelihood method is proposed to estimate the
model (1.2). In Section 3, the test statistic is proposed and the residual-
based bootstrap procedure is suggested to derive the p-value of the test.
Simulations are conducted in Section 4 to examine the finite sample

performance of the proposed procedures. As an application example,
the Boston house price data are analyzed by the proposed methods in
Section 5. Conclusion is presented in Section 6.

2. Profile quasi-maximum likelihood method

Let us work with the matrix notation. Denote
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Then model (1.2) can be written as

β ερY WY X M= + + + . (2.1)

Pretending that the error distribution is normal, ε N σ0 I∼ ( , )n
2 ,

denote ε δ βρY WY X M( ) = − − − and ρ ρA I W( ) = −n , where
δ β ρ= ( , )T T, and In is the identity matrix of order n. For model (2.1),
the log-likelihood function is

θ α α

ε δ ε δ

L U U n π n σ ρ

σ

Y Alog ( | , ( ),…, ( )) = −
2

log(2 ) −
2

log( ) + log | ( ) |

− ( ) ( )
2

,

n n1
2

T

2 (2.2)

where θ β ρ σ= ( , , )T 2 .
In the following, we will apply the profile least-squares approach of

Fan and Huang (2005) and Su and Ullah (2006) to estimate the
parameter θ and the unknown coefficient functions α (·). If the
parameters β and ρ are known, then model (1.1) can be written as

βY α U Z α U Z εX* − = ( ) +⋯+ ( ) + ,i i i i q i iq i
T

1 1 (2.3)

where Y Y Y ρ ρA Y Y WY( *, *,…, *) = ( ) = −n1 2
T . Clearly, model (2.3) is a

standard varying coefficient model. Many procedures have been
proposed to estimate the unknown varying coefficient functions. We
will apply the local linear approach to model (2.3). Assume
α j q{ (·), = 1, 2,…, }j have continuous second order derivatives. Then,
for any given u in a small neighborhood of u0, one can approximate
α (·)j locally by a linear function

α u α u α u u u j q( ) ≈ ( ) + ′ ( )( − ), = 1, 2,…, ,j j j0 0 0

where α u α u u′ ( ) = ∂ ( )/∂j j . This leads to the following weighted local
least-squares problems: find α u α u j q{( ( ), ′ ( )), = 1, 2,…, }j j0 0 to mini-
mize
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0

(2.4)

where K is a kernel function, h is a bandwidth and K K h h(·) = (·/ )/h .
Let
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and

K U u K U u K U uK = diag{ ( − ), ( − ),…, ( − )}.u h h h n1 0 2 0 00

The solution to the problem (2.4) is given by

β

α u α u α u α u

ρ

D K D D

K A Y X

[ ( ),…, ( ), ′ ( ),…, ′ ( )] = { }

[ ( ) − ].

q q u u u u

u
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T T −1 T

0 0 0 0

0 (2.5)

We take u0 to be each of U U U, ,…, n1 2 , then we can obtain the
estimators of α U j n( ), = 1, 2,…,j . Therefore, we can define the estima-
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