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A B S T R A C T

Stable distributions have interesting properties that make them a versatile tool suitable for modelling a
wide range of processes from different scientific fields, from meteorology to computer science and from
communications to economic theory. Our objective is to use stable laws to get an insight at the distributional
characteristics and behavior of the US Consumer Price Index inflation. Such a descriptive model is essentially
an easy to use tool that provides us with useful information about the Index, via its ability to generate
series with similar characteristics. Besides using an appropriate non-parametric test, an examination via
an ensemble of a large number of simulated series is implemented in order to assess the accuracy of the
model. Its capabilities and adaptability make it a useful tool for everyone analyzing processes from the field
of economics.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The normality assumption of economic data is widely used and in
many cases it is also well founded, but whenever extreme variability
is observed, the question of normality deviation is arising. Stable dis-
tributions have been known to be implemented in order to explain
the stochastic behavior of such processes and our objective is to
investigate whether the nature of the CPI inflation can be considered
similar to the stochastic nature of the stable laws.

Our work is an addition to the applications of stable distribu-
tions in economics and finance that were published by Fama (1965),
Mandelbrot (1963), Mittnik et al. (1998), Rachev and Mittnik (2000),
Rydberg (2000) and Tsionas (2002). Analysis regarding the behavior,
characteristics, structure and dynamics of the CPI inflation, can be
found in Apergis (2011), Baillie and Morana (2012), Benkovskis et al.
(2012), Funke et al. (2015) and Galí and Gertler (1999), while some
of the numerous inflation forecasting papers that were published,
include Duarte and Rua (2007), Freeman (1998), Kichian and Rumler
(2014), McAdam and McNelis (2005) and Öğünç et al. (2013).

When we fit a stable distribution to a series with high variability,
examining the value of the a parameter (a ∈ [0, 2]) is important in
order to quantify and evaluate our suspicions of deviation from the
gaussian case. Even a value seemingly close to 2 (i.e a = 1.8), marks
the existence of a noteworthy greater variability than the one present
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in normal distributions, as it is the case not only with our CPI inflation
series, but also with many other processes studied in economics.

The algorithms available play a crucial role in the applicability
of the model and therefore its value and usage to the applied
researcher, since the inference and simulation methods can deter-
mine the speed, accuracy and the overall efficiency of the endeavor.
The (Koutrouvelis, 1980, 1981) method for inference stands out from
the various alternatives satisfying all of our specifications. Combined
with the standard algorithm for generating stable laws by Chambers
et al. (1976) and Weron (1996), provide us with everything we need
to identify and reproduce the stable sequence we desire.

Besides addressing these issues, we are also trying to get infor-
mation about the overall adaptability of our model, not just by
implementing an appropriate non-parametric test, but also by using
an additional, different approach to the problem. We examine the
goodness of fit of the stable distribution to the data via an ensemble
of 10,000 simulated series from which the mean Cumulative Distri-
bution Function (CDF) is derived and compared with the CDF from
the data. The results clearly indicate a very good fit, with the CDF of
the CPI inflation being exceptionally close to the average CDF from
our simulations, clearly capturing the extreme values of the data that
prompted the investigation about the applicability of the stable laws
in the first place.

The dataset used to facilitate this undertaking, consists of the
monthly US Consumer Price Index (CPIAUCSL) inflation for the past
20 years (US. Bureau of Labor Statistics).

The paper is organized as follows. In the first section we present
the tests used and provide useful information about the stable
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distributions by presenting the tools available for the parameter esti-
mation and the available algorithm for simulation. The next section is
devoted to the CPI dataset where we estimate the stable parameters,
examine the paths we generated and evaluate the applicability of
the stable distribution to this type of data. In the final section the
conclusions from the model’s implementation are reported.

2. Mathematical ingredients

2.1. Kwiatkowski Phillips Schmidt Shin (KPSS) test

The KPSS test (Kwiatkowski et al., 1992) is one of the standard
tests used for testing the existence of a level (or trend) stationary
series. In the KPSS test for level stationarity, one estimates the
following model:{

yt = l t + ut and

l t = l t−1 + et , with et ∼ iid(0,s2
e )

(2.1.1)

where ut is a stationary process and lt is a random walk whose
initial value l0 serves the role of an intercept (level) around which
we will test for stationarity. The null hypothesis of level stationarity
is specified as s2

e = 0 which implies that lt is a constant, while the
alternative of s2

e > 0 introduces a unit root in the random walk.
When we are testing the null hypothesis of stationarity around

mean, versus the presence of a unit root, the test statistics for the
KPSS test is:

Test Statistic =

T∑
n=1

S2
t

s2T2
(2.1.2)

where T is the sample size, s2 is an estimate of the long run variance
and St = e1 + e2 + . . . + et.

2.2. Stable distributions

Definition 2.2.1. A random variable X is said to have a stable distri-
bution if for any positive numbers A and B there is a positive number
C and a real number D such that:

AX1 + BX2
d

= CX + D (2.2.1)

where X1 and X2 are independent copies of X and “
d

=” denotes
equality in distribution (Samorodnitsky and Taqqu, 1994).

An equivalent definition to Definition 2.2.1, is the following:

Definition 2.2.2. A random variable X is said to have a stable distri-
bution if there are parameters 0 < a ≤ 2, s ≥ 0, −1 ≤ b ≤ 1 and l

real, such that its characteristic function 0(h) has the following form:

0(h) = E exp ihX

=

{
exp{−sa

∣∣h∣∣a(1 − ib(sign(h)) tan pa
2 ) + ilh} if a �= 1

exp{−s
∣∣h∣∣ (1 − ib 2

p (sign(h)) log
∣∣h∣∣) + ilh if a = 1

(2.2.2)

where:

sign(h) =

⎧⎪⎪⎨
⎪⎪⎩

1 if h > 0

0 if h = 0

−1 if h < 0

The parameter a is the index of stability and the parameters s , b
and l are unique, with b being irrelevant when a = 2.

A random variable X is called strictly stable if Definition 2.2.1 holds
with D = 0. A stable random variable X is called symmetric stable,
if its distribution is symmetric, that is if: X and −X have the same
distribution.

Obviously a symmetric stable random variable is strictly stable.
Since Definition 2.2.2 is characterized by four parameters: a ∈

(0, 2], s ∈ R≥0, b ∈ [−1, 1] and l ∈ R we will denote stable
distributions by Sa(s ,b, l) and we will write:

X � Sa(s ,b, l)

When X is a symmetric a stable distribution (meaning
b = l = 0), we will write:

X � SaS

The following graphs represent some characteristic stable densi-
ties (Figs. 2.2.1 and 2.2.2).
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Fig. 2.2.1. Probability density functions for five symmetric (b = 0 and l = 0) a-stable
random variables. The remaining parameter takes the value: s = 1.
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Fig. 2.2.2. Probability density functions for five skewed (b = 0.5 �= 0) a-stable
random variables. The remaining parameters take the values: s = 1 and l = 0.
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