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Recently, many academic researchers have implemented several numerical procedures to solve a dynamic
portfolio choice problem especially in incomplete markets. The subsequent numerical results are sometimes
significantly different from one paper to another. Thus, they have all advocated the accuracy of their methods.
This paper contributes to the previous accuracy debate by showing how to obtain some accurate numerical
results without numerical approximations. We use the dynamic programming approach in continuous-time,
and illustrate the framework with one risky and one riskless asset. The framework is flexible enough to cover
all the HARA class of utility functions. We derive explicit solutions with a stochastic market price of risk and
with a stochastic volatility. 7 countries are considered in numerical illustrations.
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1. Introduction

In a practical point of view, themean–variance framework is widely
used for portfolio choice problems. This is due to the explicit solution it
provides. In a theoretical point of view, quadratic utility is convenient to
derive a classical mean–variance portfolio (also calledmyopic demand).
Markowitz (2014) summarizes some of the related findings, and he
clarifies some common mistakes such as the normality of return
distributions. Yao et al. (2014) restate mean–variance portfolio in
continuous-time using the dynamic programming approach. This
allows them to establish some properties such as the no interplay be-
tween the risk free asset and the risk free wealth. However, going
back to the seminal works on portfolio choices with the dynamic
programming approach, Samuelson (1969) and Merton (1969) respec-
tively in discrete-time and in continuous-time, show that a logarithmic
utility or even a CRRA utility with constant investment opportunities,
lead to mean–variance portfolio. Otherwise, an investor who has a
complex utility and who believes in return predictability, should have
an inter-temporal hedging demand to hedge against adverse changes
in investment opportunities (Merton, 1971, 1973). The lack of easy-
to-use explicit solutions with a realistic assumption such as incomplete
markets, makes this task difficult.

Starting from the contribution of Merton (1971), many results on
dynamic portfolio optimization problems have been obtained. Howev-
er, with a simple CRRA utility, it still appears to be difficult to provide
accurate numerical results when there is predictability in asset returns,1

i.e. when investment opportunities are time-varying. A large number of
papers have proposed to use a VARmodel to forecast returns and study
their implications on long-term portfolio choice problems. As a result,
the academic literature has followed twomain lines. The first one relies
on mathematical tools, and then establishes some theoretical explicit
solutions (see Kim and Omberg, 1996; Liu, 2007 and references
therein). Such solutions exist only in continuous-time. To provide
accurate numerical values, investor must solve a quite complicated
issue of time aggregation (Bergstrom, 1984; Campbell et al., 2004).
The second line of research directly implements in discrete-time some
challenging numerical methods. In fact, Barberis (2000) develops a
discretization state space method that serves as a benchmark. Brandt
et al. (2005); van Binsbergen and Brandt (2007); Garlappi and
Skoulakis (2009) among others use some sophisticated backward
induction techniques and evaluate the accuracy of their results by com-
paring them to the discretization state space benchmark. Nevertheless,
in a recent paper, Cong and Oosterlee (2015) implement an improved
version of the method of Brandt et al. (2005), and then, they compare
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1 In this paper, the word return means a log or continuously compounded total return
unless otherwise stated.
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the resulting numerical values to a benchmark based on the Fourier co-
sine series expansion. Using a theoretical model, we show how to
analytically obtain similar numerical values.

Some approximation numerical procedures have appeared to be
inconsistent. In fact, Detemple et al. (2005) find that Detemple et al.
(2003) procedure is more accurate and more faster than that of
Brandt et al. (2005). van Binsbergen and Brandt (2007) using regression
procedure to approximate the expectation component of value function
claim that the portfolio weight iteration (which was previously
developed by Brandt et al., 2005) is more accurate than that of the
value function. Garlappi and Skoulakis (2009) challenge this result by
showing that certainty equivalent transformation of value function
leads to much more accurate numerical results when the expectation
of the value function is approximated by Gauss–Hermite quadrature
with six nodes. Garlappi and Skoulakis (2011) provide a general
discussion on approximation accuracy in discrete-time. However, all
discrete numerical procedures approximate directly or indirectly a
highly non-linear value function and cannot explicitly separate the so-
called hedging demand from the so-called myopic demand. The
continuous-time model considered in this paper does this separation
and provides some very accurate numerical results since it is based on
a well-documented explicit solution.

Boyle et al. (2008); Detemple et al. (2005); Detemple et al. (2003);
Cvitanić et al. (2003) among others work in continuous-time. They
perform some pure simulation techniques to derive optimal portfolio
weights. In fact, these authors achieve a transformation of portfolio
weight as a fraction of instantaneous standard deviation of wealth or
obtain solutions under Malliavin calculus, and then they carry different
kinds of Monte Carlo simulations to provide numerical values. Unfortu-
nately, these prominent techniques are intractable with the assumption
of incomplete markets. We propose a direct approach derived from
analytical formula with a realistic assumption of incomplete markets
for all the HARA (Hyperbolic Absolute Risk Aversion) preferences. We
derive explicit solutionswhen themarket price of risk (also called Sharpe
ratio) defined the state variable, and when the stochastic volatility
defined the state variable in the sense of Heston (1993). We make a
detour to construct a bridge between continuous-time and discrete-
time parameters. Actually, the literature on return predictability
forcefully claims that the log dividend-price ratio predicts stock returns
(Fama and French, 1988; Campbell and Shiller, 1988; Hodrick, 1992 or
more recently Cochrane, 2008, 2011). Therefore, taking the predictabil-
ity as given, we based our analysis on the log dividend–price ratio, and
in empirical illustration we consider 7 countries2: Canada, France,
Germany, Italy, Japan, UK and US.

Unlike Campbell et al. (2004), we deal with horizon which does not
need to be necessarily infinite, and we define the continuous state
variable as the market price of risk (also called Sharpe ratio) rather
than the risk premium.We focus on the clear link between a continuous
state variable (market price of risk/volatility) and a discrete state variable
(log dividend–price ratio). This leads to some comprehensive expres-
sions, which are very fast to be implemented. Campbell et al. (2004)
work with an approximate analytical solution for an investor with an
infinite horizon and recursive preferences. In this context, they provide
evidence that there should exist minor discrepancies between results
under discrete-time vs. continuous-time models. Accordingly, numeri-
cal results we derive from continuous-time are indirectly comparable
to those of Garlappi and Skoulakis (2009). We show that, for large
degrees of risk aversion and/or small horizons, when the state variable
is close to its unconditional mean, the two numerical results are quite
similar. Otherwise, results under our explicit solutions in continuous-
time exhibit some discrepancies with Garlappi and Skoulakis (2009)
when the risk aversion decreases and/or the time horizon increases.

We argue that this is due to the large sensitivity of total demand to
the continuous-time state variable (Sharpe ratio) or equivalently to
the discrete-time state variable (log dividend–price ratio).

The paper is organized as follows: Section 2 presents the general
investment opportunity sets, it treats 2 underlying applications;
Section 3 studies some dynamic portfolio choice problems in
continuous-time; Section 4 exposes the way we map a continuous-
time investment opportunity set and a discrete-time one; Section 5 il-
lustrates some numerical results with international data, and it tests
the accuracy of our approach using the estimates of Brandt et al.
(2005) for the purposes of comparison; Section 6 concludes.

2. Investment opportunity sets

Investment opportunities in continuous-time are generally de-
scribed by the connection between returns, interest rate and volatility.
If at least one of these three variables is stochastic, then the investment
opportunities become stochastic. A state variable drives the investment
opportunities as well as the price changes. Thus, a state variable evolves
in a predictable way respecting a probability measure. In this section,
we firstly propose a general discussion with a free state variable.
Secondly, we study two interesting applications.

2.1. General stochastic investment opportunity sets

An investor should react to changes in investment opportunities
Merton (1971, 1973). Let us consider the following general diffusions:

d Pt þ Dtð Þ= Pt þ Dtð Þ ¼ μr St ; tð Þdt þ σ r St ; tð ÞdBr
t ; ð1Þ

dSt ¼ μs St ; tð Þdt þ σ s St ; tð ÞdBs
t ; ð2Þ

where the variables (P + D) and S respectively denote the real
stock price (including the dividend D) and the real state variable
S. The random variables dBtr and dBts are two standard Brownian
motions. All stochastic processes constructing from Brownian motions
are supposed to be progressively measurable on a filtered probability
space (Ω, F , (F t)t≥0,ℙ) where Ω is the state space, F is the σ-algebra
indicating measurable events, ℙ is the historical probability and the
filtration is the augmented filtration generated by the Brownian
motions. Parameters μ(·) and σ(·) naturally denote the drift and diffu-
sion rates related to each equation. They are supposed to satisfy
Lipschitz conditions guaranteeing that each differential equation admits
a unique strong solution. When there is no confusion, we will respec-
tively denote μr (St, t), μ s (St, t), σr (St, t) and σr (St, t) by μ r, μ s, σr and
σs. The drift rate μ r(·) depends on the level of real interest rate r
assumed to be constant. Thus, we suppose that there exists a risk free
asset whose real price P f evolves such that

dP f
t =P

f
t ¼ rdt: ð3Þ

Hence, in our model, the investment opportunities are stochastic if
and only if, the state variable S is stochasticmeaning that its expectation
is time varying and its volatility is different from zero.

The two Brownian motions in Eqs. (1) and (2) are correlated such
that dBtrdBts=ρsdt. The instantaneous correlation between shocks is
given by ρs≠±1, meaning that markets are incomplete. Thus the
number of state variables could not exceed the number of risky assets
(Merton, 1973). For this reason, we do not explicitly take into account
the dynamic of inflation which acts as an additional state variable. We
directly consider real variables. Furthermore, empirical investigations
reveal that the inflation risk is minor. The quarterly volatility of inflation
is very low in 7 countries (see Table 1). It is about 3.83/200 for the US
during the period 1970Q1–2015Q3. However, note that if markets are
complete, the issue of limited state variables disappears since shocks
would be the same. Honda and Kamimura (2011); Detemple et al.

2 When there is no confusion,wewill respectively call these countries CAN, FR,GER, ITA,
JAP, UK and US.
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