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a b s t r a c t

Tumor gene expressive data are characterized by a large amount of genes with only a small amount of
observations, which always appear with high dimensionality. So it is necessary to reduce the
dimensionality before identifying their genre. In this paper, a discriminant manifold learning method,
named locally linear representation Fisher criterion (LLRFC), is applied to extract features from tumor
gene expressive data. In LLRFC, an inter-class graph and an intra-class graph are constructed based on
their genre information, where any tumor gene expressive data in the inter-class graph should select k
nearest neighbors with different class labels and in the intra-class graph the k nearest neighbors for any
tumor gene expressive data must be sampled from those with the same class. And then the locally least
linear reconstruction is introduced to optimize the corresponding weights in both graphs. Moreover, a
Fisher criterion is modeled to explore a low dimensional subspace where the reconstruction errors in the
inter-class graph can be maximized and the reconstruction errors in the intra-class graph can be
minimized, simultaneously. Experiments on some benchmark tumor gene expressive data have been
conducted with some related algorithms, by which the proposed LLRFC has been validated to be
efficient.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

With the emergence of tumor gene expressive data collected
from DNA microarray, it comes true to simultaneously monitor
expression of all genes in the genome, which contributes to make
insight into biological processes and mechanisms of human dis-
eases. However, how to interpret tumor gene expressive data still
needs further demonstration. Up to now, many studies have been
reported on tumor gene expressive data analysis [1–8], where key
tumor genes selection and molecular classification of cancer are
mainly concentrated on. It is the fact that tumor gene expressive
data are always characterized by a large amount of variables
(genes) with a small amount of observations (samples), thus
before carrying out classification on them, some methods are
recommended to reduce their dimensionality or extract features.

The popular linear methods involved in tumor gene expressive
data analysis are principal component analysis (PCA) [41], partial
least squares (PLS) [11,40] and independent component analysis
(ICA) [9,10]. However, Pochet et al. systematically proved that

nonlinear models are superior to those linear ones on many tumor
gene expressive data sets in 2004 [12]. So how to nonlinearly mine
the tumor gene expressive data has been attracting a lot of attention
and some nonlinear models are presented. Alexandridis et al. put
forward a nonlinear method with finite mixture distribution for
tumor analysis [13]. Meanwhile, Martella et al. propose a nonlinear
factor mixture model, where both factor factorization and normal
mixture are integrated [14]. Moreover, other nonlinear feature
extraction methods such as kernel methods and manifold learning
have also been advanced for tumor gene expressive data analysis.

Unlike kernel methods, which nonlinearly extract features by a
kernel transformation, manifold learning is straightforward to explore
the inherent nonlinear structure hidden in the high dimensional
space. Firstly manifold learning methods approach local manifold
structures using k nearest neighbors (KNN), where any point and its
k nearest neighbors will be viewed on a local super-plane. Then the
locality can be well modeled by handling the linear computational
rules in the local patch. At last, manifold learning pursues low
dimensional embeddings of the original data by locality preserving.
When mapping all the localities into a global framework, although the
local geometry is linear, the corresponding global structure still shows
its nonlinearity. In the last decade, some classical manifold learning
algorithms have been presented. Among them, isometric feature
mapping (ISOMAP) [15], Laplacian eigenmaps (LE) [18], locally linear
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embedding (LLE) [16,17] and their extensions are widely used for
feature extraction or dimensionality reduction. They have yielded
impressive results on artificial and real world datasets [19–21,42].

LLE is an effective method for data visualization. However, it
exposes some limitations when applied to data classification. One
is out-of-sample problem [22]. Another limitation is that the
classical LLE does not take into account class information of the
training samples, which displays negative impacts on the recogni-
tion accuracy.

In order to avoid the problem mentioned above, more and
more supervised versions of LLE have been presented to deal with
data classification. In the original LLE, the manifold local geometry
is usually explored using KNN, where Euclidean distance is
involved. In most cases, some points with different labels may
also have a shorter Euclidean distance than those with the same
class, which results in wrong neighborhoods for classification
because some nearest neighbors are from those data with different
classes. To address the problem, a method is brought forward to
adjust neighborhood weights using class information, where the
distance between any two points belonging to different classes is
defined to be relatively larger than its Euclidean distance while
those distances between points with the same label are preserved.
The work is first presented by de Ridder et al. [23]. Instead of
enlarging the between-class distances, Wen et al. utilize a non-
linear function to shrink the within-class distances [24], which
shows similar impacts on recognition performance. These meth-
ods either enlarge between-class distances or shrink within-class
distances. Thus Zhang poses an enhanced supervised model of LLE
by reducing within-class distance and expanding between-class
distance simultaneously [25]. Later, Zhang and Zhao define a
probability-based distance that can enlarge the Euclidean distance
for labeled and unlabeled points [29,30]. Combining to the class
information, these methods endeavor to increase the accuracy of
LLE by adjusting the distances between neighborhood points
rather than by selecting the neighborhoods points. Thus Hui
et al. [26] and Zhao et al. [27] impose a strict constraint that only
points with the same class can be considered to be k nearest
neighbors. But it must be noted that the neighborhoods points
determined by the method mentioned above will be not enough to
explore the manifold geometry structure when they are not
densely sampled. Therefore, Han et al. propose a method to make
a supplement [28]. According to the ascending Euclidean dis-
tances, the same class samples are predefined as neighborhood
points, and then the remaining neighbors are searched from those
with different classes. Moreover, to overcome out-of-sample
problem, Kokiopouloua et al. propose an orthogonal neighborhood
preserving projection (ONPP) method, which introduces a linear
transformation to minimize the reconstruction errors in low
dimensional space [43]. Later, Kokiopouloua et al. define a repul-
sion graph to extract supervised features, where an objective
function is constructed to minimize the weighted difference of
the reconstruction errors to distances between any two points
with different labels in low dimensional space [44]. Similar to
Kokiopouloua, Zhang et al. also design an intra-class graph and
expect to explore a subspace with the minimum weighted differ-
ence of the reconstruction errors in the intra-class graph to
distances between any two differently labeled points [45]. On
the basis of ONPP, some other methods are presented to set the
weights between nodes adaptively [46,47]. However, these mod-
ified versions mainly take advantage of class information to adjust
the distances between points or to select the neighborhood points
in KNN graph, where more parameters are introduced with the
augment of the application difficulty.

In addition, some other supervised LLE algorithms combined
with LDA have also been boomed. Based on the projection
distances of the preprocessed points in LDA subspace, Pang et al.

select the k minimum-distance points as the neighbors for each
data point and then apply LLE [31]. This method can be viewed as
the mode of LDAþLLE because LLE is introduced to extract
features from those data handled by LDA. Zhang et al. present a
unified framework of LLE and LDA [32,33]. This framework
essentially equals to LLEþLDA, where LLE is firstly used to project
the original data into a subspace and then LDA is employed to
extract features discriminatively. Pang et al. also bring forward an
integrated model which is linearly constructed by the objective
functions of LLE and LDA under some constraints [34]. The model
can be changed into LLE or LDAwhen the coefficient is one or zero,
respectively. Furthermore, a local Fisher embedding (LFE) is put
forward by de Ridder et al. [35], where local geometry and global
class information are absorbed into a Fisher formulation. Li et al.
also propose a supervised LLE algorithm named local linear
discriminant embedding (LLDE) based on the fact that the embed-
dings cost function is invariant to translation and rescaling under
sum-to-one constraint to the reconstruction weights in LLE, where
the translations and the rescalings can be optimized with a
modified LDA [36]. In above methods, the class information is
globally involved because LDA is introduced to extract features.
However, manifold learning is a nonlinear approach by locality
learning. Thus it will contribute to explore the local structure
discriminatively using the local label information associated to the
corresponding points contained in local patch.

In this paper, a discriminant manifold learning method is
applied to extract relevant biological correlations or “molecular
logic” from tumor gene expression data. In the method, we have
taken advantage of genre information of tumor gene expressive
data, by which an intra-class graph and an inter-class graph can be
constructed, respectively. In the intra-class graph, any point and its
k nearest neighbors should be sampled from the same class points.
On the contrary, for any points in the inter-class graph, it must
select those with different classes to it as its k nearest neighbors.
At last a Fisher criterion can be reasoned to find the optimal
projection, which cam maximize the reconstruction errors in the
inter-class graph and minimize the reconstructions errors in the
intra-class graph in the low dimensional space, simultaneously.

The rest of paper is organized as follows. Section 2 describes
classical LLE algorithm. Section 3 presents the proposed algorithm.
Some experimental results and simulations are offered in Section 4.
Then the whole paper is finished with conclusions in Section 5.

2. Review of LLE

Let X ¼ ½X1;X2; :::;Xn�ARD�n be n points in high dimensional
space. The data are well sampled from a nonlinear manifold. The
goal of LLE is to map the high dimensional data into a low
dimensional manifold space with dimensionality d(d⪡D). Let us
denote the corresponding set of n points in the embedding space
as Y ¼ ½Y1;Y2; :::; Yn�ARd�n. The outline of LLE can be summarized
as follows:

Step 1: For each data point Xi, identify its k nearest neighbors
by KNN.
Step 2: Compute the optimal reconstruction weights which can
minimize the error of linearly reconstructing Xi by its k nearest
neighbors.
Step 3: Calculate the low-dimensional embedding Y for X that
best preserves the local geometry represented by the recon-
struction weights and the corresponding k nearest neighbors.

In Step 1 Euclidean distance is always used to define neighbor-
hood, which is composed of k points with the sorted bottom

B. Li et al. / Computers in Biology and Medicine 53 (2014) 48–54 49



Download English Version:

https://daneshyari.com/en/article/505374

Download Persian Version:

https://daneshyari.com/article/505374

Daneshyari.com

https://daneshyari.com/en/article/505374
https://daneshyari.com/article/505374
https://daneshyari.com

