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Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity (FIGARCH) models have
enjoyed considerable popularity over the past decade because of their ability to capture the features of volatility
clustering and long-memory persistence. However, in the presence of structural changes, it is well known that
the estimate of long memory will be spurious. Consequently, two modeling approaches are developed to incor-
porate structural changes into the FIGARCH framework. One approach is tomodel the intercept in the conditional
variance equation via a certain function of time. Based on this approach, the Adaptive-FIGARCH (A-FIGARCH) and
Time-Varying FIGARCH (TV-FIGARCH) models are proposed. The second approach is to model the time-series in
separate stages. In the first stage, a certain algorithm is applied to detect the change points. The FIGARCH model
is fitted to the time-series in the next stage, with the intercept (and other parameters) being allowed to vary be-
tween change points. An example of a recently developed algorithm for detecting change points is the Nonpara-
metric Change Point Model (NPCPM), which can be readily applied to the standard FIGARCH framework
(NPCPM-FIGARCH). In this paper, we adopt the second approach but use the Markov Regime-Switching (MRS)
model to detect the change points and identify three economic states depending on the scale of volatility. This
new 2-stage Three-State FIGARCH (3S-FIGARCH) framework is compared with other FIGARCH-type models via
Monte-Carlo simulations and high-frequency datasets. From the comparison, we find that the 3S-FIGARCH
model can largely improve the fit and potentially lead to amore reliable estimator of the long-memory parameter.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Persistence of a time series describes how fast the effect of current
shock will die away. It has been extensively observed and studied in
various fields of economics and finance in the past few decades
(Aggarwal et al., 1999; Fan et al., 2008; Granger and Hyung, 2004;
Jensen, 2000; Narayan and Narayan, 2007; Narayan and Narayan,
2011). The analysis of persistence can help researchers understand
how the time series evolves and improve the forecasting quality
(Franses and van Dijk, 1996; Ho et al., 2013; Liu, 2000; Narayan and
Sharma, 2014; Westerlund and Narayan, 2012). In particular, the
long-memory persistence describes the property that the effects of
shocks last far longer than the usual autoregressive moving average
(ARMA) process (Baillie and Morana, 2009; Baillie et al., 1996;
Belkhouja and Boutahary, 2011; Bollerslev and Mikkelsen, 1996;
Diebold and Inoue, 2001). A widely accepted definition of longmemory

is var(ST) = O(T2d + 1), where ST ¼ ∑
T

t¼1
yt , {yt} is a sequence of financial

series and T is the number of observations (Diebold and Inoue, 2001).

Then d is the long-memory parameter, and a positive value suggests
the existence of long memory. Among recent finance studies, there is
growing evidence suggesting that the long-memory persistence signif-
icantly exists in the volatility of financial return series (Barunk and
Dvoráková, 2015; Caporale and Gil-Alana, 2013; Li, 2012).

In particular, the time-varying volatility of financial returns has been
a considerable field of research since the introduction of the GARCH
model. To incorporate long-memory persistencewithin this framework,
the Fractional Integrated GARCH (FIGARCH) model is then proposed
(Baillie et al., 1996; Bollerslev and Mikkelsen, 1996). The FIGARCH
model has thus received considerable interest because of its ability to
capture the long-memory persistence in the volatility (Baillie and
Morana, 2009; Belkhouja and Boutahary, 2011; Ho et al., 2013). Despite
this ability, it has the samemainweakness of the original GARCHmodel,
which is the assumption that the conditional volatility has only one re-
gime over the entire period. However, many studies demonstrate that
structural changes are common in financial datasets (Beltratti and
Morana, 2006; Engle and Rangel, 2008). Further, Diebold and Inoue
(2001) argue that the existence of structural changes or stochastic re-
gime switching is not only related to long memory but also easily con-
fused with it. This finding is supported by many empirical studies,
where spurious long-memory is found when structural changes are
present (Granger and Hyung, 2004; Mikosch and Starica, 2004;
Yalama and Celik, 2013). As a result, many researchers have suggested
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that structural changes should be incorporated into long-memory
models to properly fit financial return volatility (Baillie and Morana,
2009; Beine et al., 2001; Belkhouja and Boutahary, 2011; Martens
et al., 2004; Morana and Beltratti, 2004). For instance, the Adaptive
FIGARCH (A-FIGARCH) model developed by Baillie and Morana (2009)
and the Time-Varying FIGARCH (TV-FIGARCH) model developed by
Belkhouja and Boutahary (2011) allow the intercept in the conditional
variance equation to be time-varying. Essentially, this is achieved by
modeling the intercept via parametric functions.

Among the existing literature, another approach to incorporate the
structural changes in the GARCH-type framework is to fit the model in
stages (Aggarwal et al., 1999; Malik et al., 2005; Ross, 2013). First, the
return series is fitted by a certain algorithm to detect the abrupt change
points. The intercept (and other parameters) in the conditional variance
equation is then allowed to be different for each period between the
change points. In the first stage, the most widely employed method is
the Iterated Cumulative Sum of Squares (ICSS) algorithm proposed by
Inclan and Tiao (1994). However, as pointed out by Ross (2013), the
original ICSS only works for Gaussian distribution. To overcome this
problem, Ross (2013) develops the Nonparametric Change Point
Model (NPCPM) algorithm, which employs the Mood test Mood
(1954) to detect the change points. The NPCPM-GARCH model is then
proposed, which can effectively work for both Gaussian and non-
Gaussian data. This approach can be straightforwardly extended to the
FIGARCH framework. A potential problem of the NPCPM algorithm is
that it identifies the change points without considering the economic
states. For example, sample periods with different structures are detect-
ed based on the change points only, but they will not be combined and
studied subsequently according to their economic similarity. This may
lead to a model that lacks parsimony because economic similarity is
neglected. Besides, instead of assuming that the volatility series will
switch back and forth between different regimeswith some probability,
the NPCPM algorithm assumes that the switch to a different regime is
permanent. In addition, as NPCPM requires the return series to be inde-
pendent, Ross (2013) suggests that it should be applied to the standard-
ized residuals from the (FI)GARCH model. This might cause some
problems such as the lack of economic interpretation of the detected
change points and loss of information.

In this paper, we propose a two-stage Three-State FIGARCH (3S-
FIGARCH) model, which also incorporates the structural changes by
modeling the FIGARCH process in stages. In the first stage, the MRS
framework proposed by Hamilton (1989) is employed to detect change
points directly. The MRS model assumes that there are two economic
states (low- and high-volatility states) in the financial return series.
Also, the series can switch between the states over time, and the state
process is a stationary, irreducible Markov process. We further use the
three-state classification proposed by Wilfling and Maennig (2001)
and Wilfling (2009) to classify the underlying state process: calm (ex-
tremely low volatility), turbulent (extremely high volatility) and inter-
mediate (others). In the second stage, parameters of the FIGARCH
process are allowed to be different for each state. As there are only
three possible values for eachparameter, ourmodel should bemore par-
simonious than the NPCPM-FIGARCH framework. Moreover, the MRS
model does not require the financial return series to be originally inde-
pendent, so that the detected states (change points) are more reliable.
Finally, the MRS model takes the economic information (low and high
volatility) of the return series into consideration, and the detected states
can have meaningful economic interpretation. To demonstrate the use-
fulness of the model, we firstly conduct a series of simulation studies. It
is shown that the 3S-FIGARCH model outperforms the other structure-
changing specifications (A-, TV- and NPCPM-FIGARCH) in all cases.

We also compare their performance via empirical studies on four
world stock indexes. They are hourly data collected from 1 January
2001 to 31 December 2012, including: (1) the NASDAQ, which consists
of over 3000 stocks listed on the NASDAQ stock market; (2) the DAX,
which consists of 30 large Germany companies; (3) the Nikkei, which

consists of 225 Japanese companies; and (4) the ASX, which consists
of 50 large Australian companies. Assumptions of Gaussian, Student's t
and General Error (GED) distributions are modeled individually for
each model and stock index.1 The results suggest that models with
non-Gaussian distribution assumptions outperformmodelswith Gauss-
ian distribution assumptions. More importantly, the 3S-FIGARCH speci-
fication generally gives a better fit to the data when measured using
standard model selection criteria. It also provides a potentially more re-
liable estimate of the long-memory parameter. Thus, our 3S-FIGARCH
framework could be a widely useful tool for modeling the long-
memory persistence of high-frequency financial volatility in other
contexts.

The remainder of this paper proceeds as follows. Section 2 describes
the existing and structure-changing FIGARCH models, including
FIGARCH, A-FIGARCH, TV-FIGARCH and NPCPM-FIGARCH, as well as
the likelihood functions for Gaussian, Student's t and GED distribution
assumptions. Section 3 explains the 3S-FIGARCH model proposed in
this paper and compares its performance with other FIGARCH-type
models via a series of simulation studies. We discuss the empirical
results in Section 4. Section 5 concludes the paper.

2. The original and existing structure-changing FIGARCHmodels

2.1. The original FIGARCH model

The FIGARCH model proposed by Baillie et al. (1996) is extended
from the family of GARCHmodels. In addition to the features of incorpo-
rating volatility clustering and providing good in-sample estimates
(Franses and vanDijk, 1996; French et al., 1987), FIGARCH is particularly
designed to model the long-memory persistence of financial volatility.

The original FIGARCH(1, d,1) model is specified as follows:

rt ¼ μ þ εt and εt ¼ ηt
ffiffiffiffiffi
ht

p
b Lð Þht ¼ ω þ b Lð Þ−ϕ Lð Þ 1−Lð Þd

h i
ε2t

b Lð Þ ¼ 1−b1L and ϕ Lð Þ ¼ 1−ϕ1L

ð1Þ

where εt is the error at time t, ht is the conditional volatility of εt at time t,
ηt is an identical and independent sequence following a specific distri-
bution, L is the lag operator, (1− L)d is the fractional differencing oper-
ator as defined byHosking (1981) and d is the long-memory parameter.
We have a stationary long-memory process for volatilitywhen 0 b d b 1.
If d= 1, the process has a unit root and thus a permanent shock effect,
which is equivalent to the IGARCH model. If d= 0, the process reduces
to an ordinary GARCH process without long-memory persistence
(Baillie et al., 1996).

2.2. A-FIGARCH model

To control for the effects of structural changes, Baillie and Morana
(2009) suggest that the intercept of the conditional variance equation
should be time dependent. Based on Andersen and Bollerslev's (1997)
flexible functional form, Baillie and Morana (2009) propose the A-
FIGARCH model, and its conditional variance equation is shown below:

b Lð Þht ¼ ω þ b Lð Þ−ϕ Lð Þ 1−Lð Þd
h i

ε2t þωt

and ωt ¼
Xk
j¼1

γ j sin 2π jt=Tð Þ þ δ j cos 2π jt=Tð Þ
h i ð2Þ

1 Although the FIGARCHmodel is originally based onGaussian distribution (Baillie et al.,
1996), significant evidence suggests that the financial return series is rarely Gaussian but
typically leptokurtic and exhibits heavy-tail behavior (Bollerslev, 1987; Ho et al., 2013; Lin
and Fei, 2013; Susmel and Engle, 1994). Student's t-distribution and GED are two widely
used alternatives in finance study (Chkili et al., 2012; Fan et al., 2008; Ho et al., 2013;
Zhu and Galbraith, 2011) and are employed in this paper to be compared with the Gauss-
ian distribution.
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