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Testing in the presence of nuisance parameters is a problem often faced by researchers; consequently, a number
of ways are suggested in the literature to manage this situation. Among these, Maximized Monte Carlo (MMC)
tests or asymptotically valid MMC (AMMC) tests are becoming popular. TheMMC type tests have certain advan-
tages as well as disadvantages. This paper introduces a simple way to obtain Approximate Non-Similar (ANS)
critical values using a global optimizer called Simulated Annealing (SA). All threemethods are applied in the dy-
namic linear regression model context. As expected the AMMC approach is certainly less time consuming than
the MMC approach. Overall the AMMC approach seems best in terms of power properties; however the ANS ap-
proach takes negligible time compared to its competitors. Though the ANS approach controls the sizes well it can
be slightly less powerful than its competitors.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In practice one often has to conduct hypothesis testing in the pres-
ence of a number of nuisance parameters, some of which may make
the test non-similar in the sense that the test's size1 varies with the
values of these nuisance parameters. There is evidence that similar
tests may be less powerful than non-similar tests (Andrews, 2011;
Andrews et al., 2008; King and McAleer, 1987; McAleer, 1995). Also
similar tests are generally asymptotic in nature (Hansen, 2003;
Andrews, 2011). As economists often use sample sizes of under one
hundred, it is preferable that their testing procedures have reliable
finite-sample properties. A number of studies show that asymptotic
tests cannot always be reliable in small samples (MacKinnon, 2009;
Neto and Lima, 2010; Sriananthakumar, 2013). Consequently one
needs to rely on Monte Carlo simulations or a bootstrapping method
to derive critical values or p values of non-similar tests in finite samples.
Bootstrap testing can work very well in some cases, but it is, in general,
neither as easy nor as reliable as practitioners often appear to believe.
Procedures such as the double bootstrap and fast double bootstrap
may help, but this is by nomeans guaranteed. Also, if the rejection prob-
abilities depend strongly on oneormore nuisanceparameters and those
parameters were hard to estimate reliably one cannot expect a para-
metric bootstrap to work well (MacKinnon, 2009).

In the literature different approaches to control the sizes of the tests
when testing in the presence of nuisance parameters are suggested. The
classical approach to non-similar tests is to find exact non-similar

critical values, for which sizes are never greater than the nominal signif-
icance level for all possible values of the nuisance parameters. Such crit-
ical values typically have to be obtained using the Monte Carlo method
(Andrews et al., 2008; King and McAleer, 1987; Palomares and Roldan,
2006; Silvapulle and King, 1991). Other popular approaches include
using bounds type tests and confidence intervals, as suggested in
Dufour (1990), and replacing unknown nuisance parameters with con-
sistent estimates and then relying on asymptotic theory (Moreira,
2009). However exact bounds tests can be less powerful than non-
similar tests. Forchini (2005) showed that any test with size bounded
from above by a known constant has potentially very low power and a
large type II error.

Kiviet and Dufour (2003) and Dufour (2006) suggested a MMC ap-
proachwhich involves maximizing a simulated p value of a test statistic
over the nuisance parameter space using SA. Dufour (2006) also sug-
gested (and proved) AMMC tests which use a consistent set of estima-
tors of the nuisance parameters.2 The maximum p value of an AMMC
test can be obtained by maximizing a simulated p value over a subset
of nuisance parameter space (for example a confidence set for nuisance
parameters) instead of an entire nuisance parameter space. Thus the
AMMC approach will be less time-consuming than the MMC approach
(Dufour, 2006; Phipps and Byron, 2007). The great advantage of the
MMC tests is that they yield exact tests whenever the distribution of
the test statistic can be simulated as a function of the nuisance parame-
ters, also no additional assumption on distribution is needed (Dufour
and Valéry, 2009).
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1 Throughout this paper the term size is used to denote probability of a type I error.

2 This is always feasible as long as a consistent point estimate of the nuisance parame-
ters is available.

http://dx.doi.org/10.1016/j.econmod.2015.05.006
0264-9993/© 2015 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Economic Modelling

j ourna l homepage: www.e lsev ie r .com/ locate /ecmod

http://crossmark.crossref.org/dialog/?doi=10.1016/j.econmod.2015.05.006&domain=pdf
http://dx.doi.org/10.1016/j.econmod.2015.05.006
mailto:Sivagowry.Sriananthakumar@rmit.edu.au
http://dx.doi.org/10.1016/j.econmod.2015.05.006
http://www.sciencedirect.com/science/journal/02649993
www.elsevier.com/locate/ecmod


Although the MMC tests are gaining popularity (Beaulieu et al.,
2013; Dufour and Tarek, 2006; Dufour and Valéry, 2009; Frederic and
Olivier, 2006; Thomas et al., 2007), it is criticized for the following
three reasons: (1) it can be computationally demanding (2) MMC
based actual rejection frequency may be very much less than the level
of the test and may, in consequence, be severely lacking power and
(3) it is possible to get a much larger p value for nuisance parameter
values remote from the ones that actually generated the data
(MacKinnon, 2009).

This paper proposes a simple method for obtaining ANS critical
values of general non-similar tests. This involves allowing SA to find
values for the nuisance parameters (over the nuisance parameter
space) such that the size of a non-similar test (for an arbitrary critical
value) is at its maximum. Then the exact size critical value (that is,
size equals to the nominal size) is calculated for those values of the nui-
sance parameters. As explained later, in Section 2.3, if this approach is
repeated until the maximum size found is equal to the nominal level,
onemay determine an exact non-similar critical value. However, this it-
erative procedure can be extremely time-consuming and may lead to a
monotonically non-increasing sequence of critical valueswhich is strict-
ly decreasing until the procedure converges. A more practical approach
might be to stop the iterative process after one full round of the proce-
dure and hope the exact critical value obtained at that stage is close to
the exact non-similar critical value.3 Critical values obtained this way
can be regarded as ANS critical values. A number of studies use a similar
approach to controlling the sizes of non-similar tests (Inder, 1986; King
and McAleer, 1987; Silvapulle and King, 1991). These studies typically
involve finding themaximum critical value of the test for a range of nui-
sance parameter values under the null hypothesis and using this critical
value for further inferences. Such an approach may be suitable when
few nuisance parameters are present; and may not work well when
the number of nuisance parameters increases. This is what motivated
the author to propose anSAbased approach to obtain ANS critical values
of general non-similar tests. Despite its popularity in science and engi-
neering fields, SA is seldom used in econometrics (Dufour, 2006;
Dufour and Valéry, 2009; Sriananthakumar, 2013; Sriananthakumar
and King, 2006). An aim of this paper is to promote this useful algorithm
in econometrics.

In this paper, the ANS approach is applied to two non-similar tests,
namely, the Durbin–Watson (DW) test (Durbin and Watson, 1950,
1951) andDurbin's (1970) t test in the context of the dynamic linear re-
gression model. The (initial) critical values for the DW and Durbin's t
tests are obtained from the approximate small disturbance asymptotic
(ASDA) distribution (Grant, 1987; Inder, 1986) and large-sample distri-
bution of the test statistics, respectively (see Section 3.1 for more de-
tails). The sizes of the DW and Durbin's t tests are calculated for a
variety of nuisance parameter values and design matrices, in order to
check whether the SA based ANS critical values are indeed working
well in terms of controlling the sizes of the tests over the nuisance pa-
rameter space. In addition, the MMC based DW test and the AMMC
based DW test are also considered. Because these approaches are ex-
tremely time-consuming their application was restricted to one data
set and DW test only.

Both (ANS and MMC) approaches control the sizes of the tests over
the nuisance parameter space rather well. Interestingly both the
methods produce similar sizes. TheMMC test seems slightly more pow-
erful than the ANS critical values based tests. In terms of computational
time, there is a vast difference between the two methods. For example,
MMC based tests take months to produce the required results whereas
ANS based tests take hours to produce the same.4 The AMMC approach
also controls the sizes rather well except when the dynamic parameter

becomes closer to 1 and σ gets bigger. Overall the AMMC approach is
more powerful than its competitors. While the AMMC approach cer-
tainly takes less run time than the MMC, the ANS approach is clearly
preferable in this regard.

Themain contribution of this paper is in proposing a simple method
to obtaining ANS critical values of general non-similar tests using SA.
Unlike the MMC and AMMC approaches, this approach is less time-
consuming and seems to work well in the presence of nuisance param-
eters. The SA based approach proposed in this paper can also be used to
check which asymptotic approximation (ASDA or large sample) is best
in finite samples or (for example) whether the standard normal distri-
bution or Student's t distribution is more appropriate for the null distri-
bution of Durbin's t test statistic in finite samples. However, thismethod
can also be criticized (as can the MMC type approach) because it is pos-
sible to get a much larger size for nuisance parameter values distant
from the ones that actually generated the data. Use of small SA param-
eter values may alleviate this problem and produce reasonably good
sizes in a short time, as is the case in this study.

The plan of this paper is as follows. The theory, including how SA can
be effectively used to obtain ANS critical values, is discussed in Section 2.
This theory is applied in Section 3 to the problem of testing for autocor-
relation in the dynamic linear regression model. Section 4 explains the
Monte Carlo data generating process while Section 5 presents the de-
tails of the Monte Carlo experiment and its main findings. Finally,
some concluding remarks are given in Section 6.

2. Theory

In explaining the theory behind this approach, let y be an observable
n × 1 vector which has probability density

f y;ϑ;ϕ;ψð Þ

where ϑ, ϕ and ψ are u× 1, v × 1 andw × 1 vectors of unknown param-
eters. Suppose we wish to test

H0 : ϑ ¼ ϑ0 against Ha : ϑNϑ0 or ϑbϑ0 or ϑ≠ϑ0ð Þ;

where ϑ0 is a known u × 1 vector. Then ϕ and ψ are vectors of nuisance
parameters. Supposewe have a test statistic T(y)with a null distribution
which is invariantwith respect toϕ but depends onψ. The T(y) test sizes
vary with values of ψ, making the test non-similar.

Let s ψð Þ ¼ Pr T yð Þ N c f y;ϑ0;ϕ;ψð Þj½ �: ð1Þ

We wish to obtain the critical value c such that

Sup
ψ

s ψð Þ ¼ α; ð2Þ

where α is the desired significance level of the test.
Unfortunately, typically the finite sample distribution of T(y) under

H0 (in the presence of unavoidable nuisance parameters) is unknown
and we have to simulate it by the Monte Carlo method. The Monte
Carlo method results in a step-type function for probability given in
Eq. (1) which typically has zero derivatives almost everywhere, except
on isolated points where it is not differentiable. Further the supremum
(2) is typically not unique (that is, several values of nuisance parameters
can yield the same supremum). Therefore standard derivative based op-
timization routines do not work in this case. However, the required
maximizations can be performed by using special optimization tech-
niques, such as SA, which do not require differentiability.

2.1. A brief introduction to SA

An intelligent random-search technique, SA was developed by
Kirkpatrick et al. in 1983 to deal with highly nonlinear problems. SA's

3 This assumes little change in the values of the nuisance parameters thatmaximize size
for different critical values.

4 The ANS method takes less than 45 min for a large data set (n = 76) and for a small
data set (n = 20) it takes less than 4 min.
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