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a b s t r a c t

Reaction–diffusion systems often play an important role in systems biology when developmental
processes are involved. Traditional methods of modelling and simulating such systems require
substantial prior knowledge of mathematics and/or simulation algorithms. Such skills may impose a
challenge for biologists, when they are not equally well-trained in mathematics and computer science.
Coloured Petri nets as a high-level and graphical language offer an attractive alternative, which is easily
approachable. In this paper, we investigate a coloured Petri net framework integrating deterministic,
stochastic and hybrid modelling formalisms and corresponding simulation algorithms for the modelling
and simulation of reaction–diffusion processes that may be closely coupled with signalling pathways,
metabolic reactions and/or gene expression. Such systems often manifest multiscaleness in time, space
and/or concentration. We introduce our approach by means of some basic diffusion scenarios, and test it
against an established case study, the Brusselator model.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Reaction–diffusion systems often play an important role in systems
biology, such as for the modelling of developmental processes [1,2].
Cellular or subcellular biological processes with fast diffusion of
species can be seen as homogeneous, and thus spatial effects can be
ignored. However, if the diffusion is slow, the spatial distribution of
species is not uniform and has to be taken into account.

A traditional and widely used approach to represent such
reaction–diffusion processes deploys deterministic partial differ-
ential equations (PDEs) [3], which describe the time evolution of
spatially dependent concentrations. Although this formalism is
attractive and mathematically well understood, it becomes inac-
curate or even inapplicable when there are relatively few numbers
of chemical species or stochastic fluctuations play an important
role in a biological process.

Consequently, stochastic modelling of reaction–diffusion sys-
tems, using, e.g., chemical master equations [4], is increasingly
gaining attention. It deals with discrete numbers of molecules of
the chemical species involved and provides more accurate results

than deterministic PDEs. A couple of stochastic simulation algo-
rithms have been proposed, see, e.g., [2] for a review. For example,
Brownian dynamics is a particle-based approach with continuous
time and space, in which molecules evolve in terms of the
Langevin equation. Cellular automata work on a lattice with a
finite number of states in discrete time, in which diffusion is
realized by the transition of molecules from some sites to
neighbouring sites. Recently, Gillespie's stochastic simulation algo-
rithm (SSA) [5] has been extended for spatial simulation by
dividing a system into a number of well-mixed subvolumes or
compartments, in which diffusion is treated as a random jump
between neighbouring subvolumes or compartments [6,7].

Biological systems including reaction–diffusion processes
usually comprise a variety of chemical and physical processes,
e.g., molecular binding, enzymatic reactions and complex protein
interactions. Some species can be present in small numbers of
molecules, and other species in large numbers of molecules; some
reactions may be slow, but others fast. For such highly hetero-
geneous reaction–diffusion systems, a single modelling and simu-
lation method is usually not sufficient. It is necessary to combine
different stochastic and deterministic methods to build a hybrid
simulator addressing different aspects of a system [2], e.g., using
SSA for small numbers of molecules and numerical integration of
ordinary differential equations (ODEs) for large numbers of mole-
cules, which are considered as concentrations.

Recently, we have explored different scenarios for the model-
ling and analysis of (multiscale) biological systems using coloured
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Petri nets. For example, in [8,9] we discussed spatial modelling
and the colouring of space (discretisation), and in [10,11] the
modelling of membrane systems and coupled Ca2þ channels,
respectively.

In this paper, we will describe in detail how to model and
simulate reaction–diffusion systems using a coloured Petri net
framework that contains coloured stochastic Petri nets ðSPN CÞ,
coloured continuous Petri nets ðCPN CÞ, and coloured generalised
hybrid Petri nets ðGHPN CÞ. We will show how standard high-level
formalisms, which are typical for and well established in computer
science, can be conveniently applied to deal with important
biological problems, e.g., the reaction–diffusion problem. Com-
pared with our previous work, this paper will address some
specific issues associated with the modelling of reaction–diffusion
systems. We present a systematic and step-wise approach to
modelling them using coloured Petri nets and discuss in detail
the colouring of space and the flexible representation of diffusion
rates.

We are motivated by a couple of reasons. Firstly, coloured Petri
nets are graphical and intuitive means, which are easy to construct
and comprehend. Colours can be used to represent the locality of
species, and thus diffusion can be treated as recolouring of species.
Secondly, coloured Petri nets permit a parameterised modelling
style. They allow us to easily change the size (resolution) of the
space by changing the number of colours, or to adapt the notion of
space by adapting the colour definitions. Thirdly, coloured Petri
nets are promising to provide a unifying framework integrating
deterministic, stochastic and hybrid formalisms to model and
simulate different types of reaction–diffusion systems. Coloured
Petri nets offer a large variety of analysis techniques, enable a wide
range of analysis tasks (e.g., simulation with varying diffusion rates
or different initial concentrations), and are supported by powerful
tools like Snoopy [12,13]. Therefore, we are pioneering to apply
coloured Petri nets, as we do believe that biologists are ready to
use such convenient methods to cope with reaction–diffusion
systems.

The main contributions of this paper are as follows. We present
a new coloured Petri net approach with special emphasis on
systems biology to model and simulate reaction–diffusion systems.
Distinguished features of our approach are a method for repre-
senting spatial attributes of reaction–diffusion systems using
easily exchangeable colour definitions, and a method for a flexible
representation of state- and/or space-dependent diffusion rates.

In the remainder of this paper, we first briefly recall reaction–
diffusion systems in Section 2 and coloured Petri nets in Section 3.
We then introduce how to model reaction–diffusion systems using
coloured Petri nets in Section 4 and give a case study, the
Brusselator, in Section 5, followed by related work, reproducibility
and the conclusions in Sections 6, 7 and 8, respectively.

2. Reaction–diffusion systems

When there is an abundance of species, a reaction–diffusion
process can be modelled as a system of deterministic differential
equations. For example, a biological deterministic reaction–diffu-
sion system and its evolution over time τ can be given by a system
of PDEs [14]

∂S
∂τ

¼ f ðSÞþD∇2S ð1Þ

where S is a vector of concentrations of chemical species, f denotes
the production and degradation of species, D is a diagonal matrix
of diffusion coefficients, and ∇ is the Laplacian operator.

However, small abundance of species causes deterministic models
to become inaccurate or even inappropriate, thus stochastic

approaches have been used to simulate stochastic fluctuations. In
this case, a reaction–diffusion system can be formulated as a master
equation and thus stochastic simulation algorithms like the Gillespie
stochastic simulation algorithm (SSA) have to be applied. A common
approach [6,15] is to divide the whole system volumeΩ into N well-
mixed subvolumes (compartments), each of which has a size of h.
Therefore, diffusion is treated as a Markov jump process between
neighbouring subvolumes with a rate constant k¼Dc=h

2, where Dc is
the diffusion constant.

For example, consider a species, S, diffusing in one-dimensional
space, see Fig. 1. For this, the whole space is divided into N
subvolumes. We denote the number of molecules of S in the ith
subvolume by Si, i¼ 1;2;…;N. Assume k1 and k2 are two rate
constants of the two diffusion directions, the one from left to right
and the other from right to left, respectively. Then the diffusion
process can be described as a set of chemical reactions

Sj ⇌
k1

k2
Sjþ1; j¼ 1;2;…;N�1; ð2Þ

each governed by mass action kinetics parameterised with the rate
constants k1 and k2.

Let pðn; τÞ be the joint probability at time τ such that Si¼ni,
i¼ 1;2;…;N, with n¼ ðn1;n2;…;nNÞ, denoting the number of
molecules of species S in each of the N subvolumes. Let L2Ri;R2Li :
NN-NN be two functions [15] defined by

L2Ri : ðn1…;ni�1;ni;…;nNÞ
-ðn1…;ni�1�1;niþ1;…;nNÞ; ð3Þ

with i¼ 2;…;N, and

R2Li : ðn1…;ni;niþ1;…;nNÞ
-ðn1…;niþ1;niþ1�1;…;nNÞ; ð4Þ

with i¼ 1;…;N�1.
L2Ri (R2Li) describes the change of the number of molecules in

subvolume i, caused by its left (right) neighbouring subvolume
i�1ðiþ1Þ.

Then, the master equation that corresponds to the system of
chemical reactions given by Eq. (2) can be written as

∂pðn; τÞ
∂τ

¼ k1 ∑
N

i ¼ 2
ðniþ1ÞpðL2Rin; τÞ�nipðn; τÞ

� �

þk2 ∑
N�1

i ¼ 1
fðniþ1ÞpðR2Lin; τÞ�nipðn; τÞg; ð5Þ

where the first (second) term on the right hand side corresponds
to diffusion jumps from left (right) neighbours [15]. This equation
can be seen as a discretisation in space of the diffusion item (the
second item) of Eq. (1).

3. Coloured Petri nets

3.1. Petri nets

Petri nets [16] are weighted, directed, bipartite graphs, con-
sisting of places, transitions and arcs that connect them. Places
usually represent passive system components like atoms, mole-
cules, genes, mRNAs, proteins, cells, or entire populations. Transi-
tions represent active system components like different kinds of
chemical reactions, e.g., association, dissociation, translation, tran-
scription or diffusion. A place may contain one or more tokens,

Fig. 1. Diffusion in one-dimensional space. Each non-boundary subvolume has two
neighbours, the immediately left and right neighbours.
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