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Under the condition of the finite sample or the unknowndistributed error term, testing for spatial dependence in
panel data models is an unresolved problem in spatial econometrics. In this paper, a fast double bootstrap (FDB)
method is used to construct bootstrap Moran's I tests for Moran's I test in spatial panel data models, and Monte
Carlo simulation experiments are used to prove the effectiveness from two aspects including size distortion and
power. The experiment results show that, in asymptotic Moran's I test, there is serious size distortion, which
could be rectified in bootstrap Moran's I test.
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1. Introduction

Spatial econometric models have been extensively studied in the
past thirty years. They have fewer assumptions than classic econometric
models. And, to be precise, spatial econometrics can test spatial effects
including spatial dependence and spatial heterogeneity. Therefore, spa-
tial econometrics can get more reasonable and realistic conclusions
than classic econometrics. To test the existence of spatial dependence
in a spatial econometricmodel has been a core issue. Spatial econometric
models include a spatial lagmodel (SLM) and spatial errormodel (SEM).
The former studies howdependent variables in the vicinity of the behav-
ior affect other parts of the overall system behavior. And the latter,
whose spatial dependence exists in the error term, studies the influence
of the error shock on neighboring region behavior. Currently, there are
many methods to test the existence of spatial dependence in spatial
cross-sectional data models, but rarely are there methods to test the ex-
istence of spatial dependence in spatial panel data models. The common
methods to test the existence of spatial dependence in spatial cross-
sectional datamodels, includeMoran's I, LM, LR, Rao's score, etc. Moran's
I test of spatial dependence is assumed to be a non-alternative hypothe-
sis model, and, it can test spatial lag dependence and test spatial error
dependence. Therefore, Moran's I test has been most commonly used.

As we all know, the panel data contains both the characteristics
of cross-sectional data and time series data. Hence, it can provide richer
information for regression analysis. The panel data models offer the

researchers more opportunities to extend model possibilities as com-
pared to cross-sectional data models. The use of panel data also results
in a greater availability of degrees of freedom, and increases efficiency
in the estimation. Spatial panel data models lead into spatial effects,
considering the individual heterogeneity and the cross-sectional di-
mensions to test whether the spatial dependence exists. Thus, there
aremuch broader prospects of practical application in actual researches.
However, panel data information is more plentiful than cross-sectional
data. Hence, testing for spatial dependence of spatial panel data models
is a difficult problem in spatial econometrics. Furthermore, the tradi-
tional methods of testing spatial dependence depended on the assump-
tions that the error term is normally distributed or large sample
size. However, the real economy is a complex system which is affected
by diversity factors. In a large number of empirical studies, the above as-
sumptions can't satisfy strictly. For example, in real economic manage-
ment analysis, data is non-normally distributed, or its sample size is
limited for empirical discussion. Evidences (Lin et al., 2009; Yang,
2011) showed that, in finite samples, the Moran's I test referring to as-
ymptotic critical values may suffer from the problems of size distortion
and low power. Bootstrap methods, which have a good property of
finite samples, are an effective way to solve the above problems. They
are introduced into spatial cross-sectional data models by Lin et al.
(2011). But spatial panel data models are more complicated and
would affect the bootstrap sampling. Therefore, the bootstrap methods
can't be applied to the spatial panel models directly. To our knowledge,
under the conditions of finite samples, unknown distributed or
heteroscedastic error terms, testing for spatial dependence in panel
data models is an unresolved problem in empirical studies of spatial
econometrics at present.
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In this paper, we try to apply fast double bootstrap (FDB) method
to Moran's I test in spatial panel data models, and then, Monte Carlo
simulation experiments are used to prove the effectiveness of the test
statistics from size distortion and power.

The rest of the paper proceeds as follows. Spatial panel models
and Moran's I test statistics are discussed in Section 2. The applications
of the bootstrap methods are presented in Section 3. In Section 4, we
report results of Monte Carlo simulation to show size distortion and
power performance of bootstrap Moran's I test. And, we will compare
results of bootstrap Moran's I test with asymptotic test. Section 5
contains some concluding remarks.

2. Spatial panel data models and Moran's I test statistic

Elhorst (2003, 2010) extended spatial cross-sectional datamodels to
spatial panel models. And, they proposed spatial panel model estima-
tion methods. Like the spatial cross-sectional data models, spatial
panel data models can be divided into spatial panel data lag models
and spatial panel data error models. The expressions of two models
are as follows:

SLM : yt ¼ λWyt þ Xtβ þ εt
SEM : yt ¼ Xtβ þ εt ; εt ¼ ρWεt þ vt

t ¼ 1;2…; T
�

ð1Þ

where yt is aN×1 vector of a dependent variable for period t, λ is spatial
lag dependence coefficient, Xt is a N × K matrix of non-stochastics for
period t, W is spatial weights matrix, β is K × 1 parameter vector, ρ is
spatial error dependence coefficient, εt is aN×1 vector of the regression
error term for period t, and vt is a N × 1 vector of the remain error for
period t. It is assumed that |λ| b 1, |ρ| b 1, εt ∼N(0, σε

2IN), vt ∼N(0, σv
2IN).

Spatial effects will be tested in spatial panel models before the spa-
tial panel data models are established. At present, the most commonly
used method to test spatial dependence is Moran's I test which was
proposed by Moran (1948). The test statistics developed for the cross-
section were extended to the panel data model by Arbia (2005). Its
expression is as follows:

I ¼ e0WNTe
e0e

ð2Þ

where I represents Moran's I test statistic of a spatial panel data model,
WNT = IT⊗W is the spatial weights matrix,⊗ is the Kronecker product,
and e is the residual.

Anselin (1988) demonstrated when the error term does not obey
the classic distribution or heteroscedasticity, Moran's I test would be
lapse. The bootstrapmethod is an effectiveway to solve above problems
(Lin et al, 2009; Yang, 2011).

3. Moran's I test methods

Bootstrapping is a method that performs inference using pseudo-
datasets created by sampling from observed data (Efron, 1979). It is
essentially a Monte Carlo simulation procedure. It does not need to as-
sume that the error terms are independent and normally distributed
and a parametric estimate of the variance of the estimate. And, it need
not provide an observational data distribution form. Therefore, the
bootstrap methods are applied to non-classical error term conditions.

Different bootstrap methods have been developed for different
types of regression. Such as residuals bootstrap (Efron, 1979), wild
bootstrap (Beran, 1988), block bootstrap (Efron, 1979), pairs bootstrap
(Freedman, 1981). The residuals bootstrap is used in cross-section and
panel data models (Efron, 1979). The block bootstrap is used in time
seriesmodels. Thewild bootstrap is used to deal with panel datamodels
and heteroscedasticity (Davidson and MacKinnon, 2007). The pairs
bootstrap is used to dynamic model or the heteroscedastic model
which error term is unknown distributed.

Among the bootstrap methods applied in the panel data model,
Chang (2003) applied bootstrapmethod to unit root tests for dependent
panel datamodel. And they found that bootstrap tests perform better in
finite samples than in an asymptotic test. Cerrato and Sarantis (2007)
used bootstrap methods to deal with cross-sectional dependence in
panel unit root tests of real exchange rates, their results showed that
the statistic has good power and no size distortion for moderate and
large samples. Godfrey (2009) suggested that the wild bootstrap proce-
dure is well-behaved in finite samples under heteroscedasticity and
match the performance less of robust tests under classical assumptions.
However, it does not mean that bootstrap tests always perform well in
finite samples. Thus, Beran (1988) proposed the double bootstrap
(DB). But DB tends to be very computationally demanding. Davidson
and MacKinnon (2007) developed a fast double bootstrap (FDB) based
on the double bootstrap. The FDB requires no more than about twice
as much computation as the general bootstrap, making it feasible
while the double bootstrap is not. This paper is the first one which ap-
plies the FDB to test the spatial dependence of the spatial panel data
models. The most useful way to perform a bootstrap test is to calculate
P value of bootstrap. And, Monte Carlo simulation experiments are used
to prove more effective than asymptotic test of the test statistics from
two aspects including size distortion and power.

The simplest and most informative method to perform a bootstrap
test is to calculate a bootstrap P value. We obtain a bootstrap P value
of the bootstrap test statistics which are more accurate than the actual
test statistic. When this P value is below the significant value, we reject
the null hypothesis. The P value of bootstrap is calculated by the follow-
ing expression:

P� ¼ 2 � min
1
B

XB
j¼1

I η�j ≤ η
� �

;
1
B

XB
j¼1

I η�j N η
� �0

@
1
A ð3Þ

where P* is the bootstrap P value, I(⋅) is a denote function, B represents
then bootstrap test frequency, η denotes the test statistic of bootstrap.

The double bootstrap which is proposed by Beran (1988) can be
used to calculate P values. It should be more accurate than the general
bootstrap in theory. The first step in the double bootstrap is to generate
B1 first-level bootstrap samples which are used to compute bootstrap
test statistics ηj∗(j = 1, 2, …, B1). The second step is to get a second-
level bootstrap DGP (data generating process) for each first-level boot-
strap sample indexed by j. Each second-level bootstrap DGP is used to
generate B2 bootstrap samples that are used to calculate test statistics
ηjl∗(l = 1, 2, …, B2). In practice, the double bootstrap is very costly in
terms of computation. For each of B1 bootstrap samples, B2 + 1 test
statistics should be computed. Thus, the total amount of test statistics
will reach up to 1 + B1 + B1B2. The double bootstrap is costly because
we need to generate B2 s-level bootstrap samples for every first-level
bootstrap sample. It is necessary because the distribution of the ηjl∗

may be dependent on statistic ηj∗.
Davidson and MacKinnon (2007) Proposed the assumption that the

ηj∗ distribution is independent of ηjl∗. It is called the fast double bootstrap
test. And, the calculation of bootstrap test will be greatly reduced. For
the FDB test, only one second-level bootstrap statistic ηj∗ ∗, is computed
along with each ηj∗. The expression of FDB P value was given by
Davidson and MacKinnon (2006):

p��F ¼ 1
B

XB
j¼1

I η��j NQ ��
B 1−p�
� �� �

ð4Þ

where p* is the bootstrap P value, pF
�� is FDB P value, B is bootstrap test

times, QB
⁎ ⁎(1− p∗) represents the (1− p∗) quantile of the ηj∗ ∗.

Ahlgren andAntell (2008) suggested that the FDB produces a further
improvement in cases where the performance of the asymptotic test is
unsatisfactory.
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