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Wedevelop a scale-dependent nonlinear input–outputmodelwhich is a practical alternative to the conventional
linear counterpart. The model contemplates the possibility of different assumptions on returns to scale and is
calibrated in a simplemanner that closely resembles the usual technical coefficient calibration procedure. Multi-
plier calculations under this nonlinear version offer appropriate interval estimates that provide information on
the effectiveness and variability of demand-driven induced changes in equilibrium magnitudes. In addition,
and unlike linear multipliers, the nonlinear model allows us to distinguish between physical and cost effects,
the reason being that the traditional dichotomy between the price and quantity equations of linear models no
longer holds. We perform an empirical implementation of the nonlinear model using recent interindustry data
for Brazil, China and United States. When evaluating the robustness of the derived marginal output multipliers
and the induced cost effects under the nonlinear approach, the results indicate that marginal indicators in
physical terms can be perfectly used to infer average impacts; this is not the case, however, for the derived
cost effects where average measures are seen to be more adequate. At the computational level, the analysis
proves the operational applicability of the nonlinear system while at the methodological level shows that scale
effects are relevant in determining sectoral multipliers.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

There is a glaring contrast between the theoretical advances in
nonlinear input–output (NIO) theory and the surprisingly scarce list of
applications in the empirical literature. This divorce cannot be attribut-
ed to the computational requirements for solving nonlinear models.
With today's specialized software computation should not be a decisive
issue. The question probably lies on the informational requirements
needed for the implementation of NIO models, particularly on sectoral
response elasticities. As Lahiri (1983) acutely points out, empirical
estimation of NIO models is nearly impossible—too many parameters
to estimate given the available data observations. The same type of
problematic data requirement situation is also common for the specifi-
cation of computable general equilibrium (CGE)models but this has not
stopped practitioners at all (seeDervis et al., 1982,Mansur andWhalley,
1984). CGE modeling and research has become a very important area
for policy analysis and evaluation and this has been possible, in part,

thanks to the adoption of operational assumptions on agents' behavior
and the use of calibration techniques. We believe that practical imple-
mentation of NIO models is equally possible once we (i) accept some
specific behavioral rules in the definition of production activities and
(ii) are able to use observed empirical data for the parameterization of
production processes.

The theory of NIO models has been concerned with establishing
theorems that prove existence and uniqueness of solutions for a nonlin-
ear version of the Leontief input–output (I–O) quantity equations.
Under quite general conditions, but all of them sharing a modified sys-
tem productivity assumption, existence and uniqueness can be proved.
Sandberg (1973), Chander (1983), Fujimoto (1986), Szidarovszky
(1989), and Herrero and Silva (1991), among others, provide the neces-
sary theoretical background for NIO logical consistency. In a NIO model
technical coefficients are not taken as fixed. Their variability can be
attributed to many different factors (technical innovation, input substi-
tution, productivity changes, non-homogeneity, etc.) as Rose (1983)
very clearly explains in his review and assessment paper. Theorists
need not concern themselves with these possibilities but applied
economists should at least explore them and consider how to sensibly
incorporate them. The nonlinearities we consider in this paper are of
the scale-dependent type, i.e. changes in total output need not be pro-
portional to changes in total inputs but still a unique production mix
is all that is available to firms. In other words, isoquants are L-shaped
but the isoquant map is not necessarily homothetic. Price-induced
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nonlinearities in coefficients due to smooth input substitution, as dealt
with in Tokutsu (1989) or Sancho (2010), are not considered here
where we focus on the role of scale effects. West and Gamage (2001),
in turn, is one of the few empirical examples of using a nonlinear
assumption although restricted to the households' income account,
where average coefficients are substituted by marginal ones. Zhao
et al. (2006) introduce a Cobb–Douglas production function for
defining the interindustry technical coefficients but since their
model does not contemplate any price behavior whatsoever, the
selection of the input mix is very much based on some ad-hoc assump-
tions—such as maintaining total output constant when substitution
takes place in some sector. This way of proceeding has little if any
economic justification.

The paper follows this organization. Section 2 discusses the general
characteristics of the proposedNIOmodelwith scale effects. In Section 3
we undertake an empirical exercisewith the proposedNIOmodel using
2011 interindustry data for Brazil, China andUnited States. Data is taken
from the World I–O Database (WIOD). A Conclusion remarks section
completes the paper.

2. Nonlinear input–output

2.1. Review of the conventional linear model

Interindustry data provide a detailed multisectoral depiction of the
revenue–expenditure-output macroeconomic identities. Consider an
economy composed of n distinct productive sectors indexed as i, j = 1,
2, …, n. In the period when data is assembled, identified here by super
index 0, the following identities representing the circular flow of income
hold true for all j= 1, 2,…, n:

Xn
i¼1

p0i � x0ij þ p0v � v0j ¼
Xn
i¼1

p0j � x0ji þ p0j � f 0j ¼ p0j � x0j : ð1Þ

In expression (1) the left-hand side collects total expenditure in inter-
mediate purchases and value-added acquisition incurred by sector j to
carry out the production of its output xj0; the middle part is total revenue
accruing to sector j from the sale of its output xj0 to other sectors – as
intermediate demand – and to final demanders. Finally, the right-hand
side of the expression is the value of total production xj

0 obtained in
sector j. Expression (1) can therefore be seen as a sort of sectoral budget
constraint in terms of volume. Interindustry data, however, is expressed
in value and the distinction between physical magnitudes (xij0, xj0, vj0, fj0)
and prices – for goods and value-added – (pj0, pv0) is not usually available.
We can take observed transaction values as if they were physical
magnitudes and in doing so we redefine units in such a way that
every one of the new units has a worth of 1 currency unit. In other
words, we use new prices pj = 1 for goods and pv = 1 for value added
so that pi ⋅ xij = pi

0 ⋅ xij0, pv ⋅ vj = pv
0 ⋅ vj0, and pj ⋅ fj = pj

0 ⋅ fj0.
With this implicit normalization it is customary in interindustry

analysis to omit the presence of prices in the balance identities in
Eq. (1) for the base year. Contrary to what has been a common practice,
for the time being we will keep them explicit for reasons that will
become clear shortly. Consequently, from the expenditure perspective,
identity (1) becomes:

Xn
i¼1

pi � xij þ pv � vj ¼ pj � xj ð1aÞ

while, from the revenue perspective, takes the following form:

Xn
i¼1

pj � xji þ pj � f j ¼ pj � xj: ð1bÞ

Notice that since only the price pj is involved in Eq. (1b), it can be
eliminated altogether from it if so desired. However written,
expressions (1a)–(1b) are nothing but the representation of
observed data. The standard I–O model adopts the assumption that
input–output ratios and value-added ratios are constant; in other
words, it takes output as proportional to inputs by way of assuming
nonnegative technical coefficients defined by aij = xij/xj and υj =
vj/xj. In production theory terms, this technological relationship
takes the form:

xj ¼ Min
x1 j
a1 j

;…;
xnj
anj

;
vj

υ j

( )
: ð3Þ

These coefficients are assumed to be unique and independent of the
scale of production. Substituting these coefficients in Eq. (1a) and
simplifying yields:

pj ¼
Xn
i¼1

pi � aij þ pv � υ j ð4aÞ

which, translated into vector–matrix notation, can be expressed and
solved as:

p0¼p0 � Aþpv � υ0 ¼ pv � υ0 � I−Að Þ−1 ¼ pv � υ0 � L ð4bÞ

provided thatmatrixA, with [A]ij= aij, is productive and the value-added
price pv is taken as numéraire. Matrix L = (I − A)−1 in Eq. (5a) is the
so-called Leontief inverse. Similarly, substituting in expression (1b) and
eliminating now the “irrelevant” price pj gives:

Xn
i¼1

aji � xi þ f j ¼ xj: ð5aÞ

In matrix terms we would obtain:

x ¼ A � x þ f ¼ I−A½ �−1 � f ¼ L � f: ð5bÞ

The linear I–O model in expressions (4b) and (5b) is composed of
two sets of equations, one for prices and one for quantities, which
solve independently of each other. For a given technology matrix A,
cost covering prices p′ depend only on the value-added technical coef-
ficient vector υ′, while output levels x depend only on final demand
levels f. This is the well-known dichotomy between prices and quanti-
ties in the conventional I–O model and it is a property that derives
from the linearity assumption in the technology.

2.2. A nonlinear input–output system

With the objective of describing the NIO model, the point of depar-
ture is a Leontief production function with no input substitution
allowed. In the present formulation and in contrast with the standard
case, however, output and inputs are no longer related through a linear
relationship. Thus we posit that:

xj ¼ Min
x
β1 j

1 j

a1 j
;…;

x
βnj

nj

anj
;
v
βvj

j

υ j

8<
:

9=
;: ð6Þ

Under the production technology in Eq. (6), the efficient locus
becomes:

xj ¼ αij � x
βij

ij ¼ η j � v
βvj

j ð7Þ

with the notational change αij=1/aij and ηj=1/υj. Clearly for αij, βij, βvj

N 0, expression (7) represents a monotonically increasing and continu-
ous production function, i.e. more output can only be obtained when
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